为了消除或减少激光焊接的缺陷,更好地应用焊接方法,提出了一些用其它热源与激光进行复合焊接的工艺,主要有激光与电弧、激光与等离子弧、激光与感应热源复合焊接、双激光束焊接以及多光束激光焊接等。此外还提出了各种辅助工艺措施,如激光填丝焊(可细分为冷丝焊和热丝焊)、外加磁场辅助增强激光焊、保护气控制熔池深度激光焊、激光辅助搅拌摩擦焊等。(1)功率密度。 功率密度是激光加工中关键的参数之一。采用较高的功率密
技术改造激光切割机
为了消除或减少激光焊接的缺陷,更好地应用焊接方法,提出了一些用其它热源与激光进行复合焊接的工艺,主要有激光与电弧、激光与等离子弧、激光与感应热源复合焊接、双激光束焊接以及多光束激光焊接等。此外还提出了各种辅助工艺措施,如激光填丝焊(可细分为冷丝焊和热丝焊)、外加磁场辅助增强激光焊、保护气控制熔池深度激光焊、激光辅助搅拌摩擦焊等。(1)功率密度。 功率密度是激光加工中关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在10^4~10^6W/CM^2。(2)激光脉冲波形。激光束可由平面光学元件(如镜子)导引,随后再以反射聚焦元件或镜片将光束投射在焊缝上。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。(3)激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。(4)离焦量对焊接质量的影响
激光熔覆技术目前已应用于各大领域。需求量很大,包括航天航空、轨道交通、冶金石化、工程机械等。在各类钻具、截齿、轧辊、球阀、阀座和阀杆等各种易损件上,许多传统表面处理技术处理后,硬质材料易剥落,使用寿命不长。现利用激光熔覆增材制造技术,可完全避免此类问题。激光熔覆技术目前已应用各类材质。2)熔化切割,激光熔化切割时,用激光加热使金属材料熔化,喷嘴喷吹非氧化性气体(Ar、He、N等),依靠气体的强大压力使液态金属排出,形成切口。用激光熔覆强化铝合金表面,提高硬度和性,打开了铝合金作为摩擦副运动零部件的应用。激光熔覆技术替代镀硬铬工艺,解决了后者涂层与基体的结合强度弱、易脱落、环保等问题。
常用硬质合金涂层材料:铁基硬质合金,钴基合金,镍基高温合金,镍基高温合金加WC陶瓷颗粒材料作为加强项,钴基合金加WC陶瓷颗粒材料作为加强项。
自适应随形激光熔覆功能有三个典型的应用场景:
1. 大幅减少人工示教工作,缩短编程时间,提高校点精度;
2. 自动建立工件坐标系或用户坐标系,使离线编程生成的机器人路径能够、准确应用到工件上,提高生产节拍;能够取代常规的找特征点定位方法,也可以解决一些人工无法探测场景定位问题;
3. 具有简单的三维扫描功能,结合自动辨识算法和切片路径生成算法,可以实现缺陷定位和现场自适应修复;虽然一般测量精度常规三维测量系统,但是对于激光修复已经足够,而且、成本低。

激光冲击强化
概念
不同于一般的激光加工,不是利用激光产生的热效应,而是利用激光诱导等离子体冲击波产生的力学效应来改善材料表面组织和性能的。
优势
① 激光冲击强化能有效地保护被处理试样表面;
② 激光冲击强化处理具有可叠加性;
③ 激光冲击强化可获得特别高的冲击力,产生很深的强化层;
④ 激光冲击强化可在室温、空气条件下进行,工艺过程清洁、无污染,是一种绿色、环保的表面强化方法,并且处理后试样表面的光洁度较高,特别适合对表面质量要求较高的试样进行局部强化处理;
⑤ 激光便于聚焦和传播,激光冲击加工柔性更好,在常规方法无法进入的局部表面或不规则复杂空间的强化处理方面,具有明显的优势,而且激光冲击强化的控制参数较少(激光功率密度、激光光斑尺寸、激光脉冲持续时间),易于和控制,便于实现自动化生产;
⑥ 与传统机械喷丸相比,激光冲击处理获得的材料表面残余应力深度可达1 mm,约为机械喷丸的2~5倍,而其加工硬化程度明显机械喷丸处理;同时可保留较好的表面形貌,激光冲击处理后的表面不平度明显机械喷丸处理;
特点
① 超高压,冲击波峰压达到数万个大气压;
② 超快,塑性变形时间仅仅几十ns;
③ 超高应变率,达到107s-1,比机械喷丸强化高万倍。

(作者: 来源:)