人工智能控制器
建立相匹配的控制模型,同时根据数据实时反馈选择控制方案,持续进化,给出优控制参数值。品投运后云端一键操作,的简单背后是强大的算法支持:决策机TMAI可根据用户设置的室温目标数据,完成复杂运算后直接给出控制目标参数,如供水温度等。决策机TMAI模型可以解决传统控制模型中室温数据滞后性问题,结合气候参数提前预测、预知合理控制目标值,提前干预,平抑室温波动。
人工智能化改公司
人工智能控制器
建立相匹配的控制模型,同时根据数据实时反馈选择控制方案,持续进化,给出优控制参数值。品投运后云端一键操作,的简单背后是强大的算法支持:决策机TMAI可根据用户设置的室温目标数据,完成复杂运算后直接给出控制目标参数,如供水温度等。决策机TMAI模型可以解决传统控制模型中室温数据滞后性问题,结合气候参数提前预测、预知合理控制目标值,提前干预,平抑室温波动。
误差反向传播技术是多层前聩ANN常用的学习技术。如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN只能实现需要的映射,没有直接的技术选择优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的快下降法,输出结点的误差反馈回网络,用于权重调整,搜索优。
使用常规反向转波算法的ANN用于步进电机控制算法的优化。该方案使用实验数据,根据负载转矩和初始速度来确定大可观测速度增量。这就需要ANN学习三维图形映射。该系统与常规控制算法(梯形控制法)相比具有更好的性能,并且大大减少了定位时间,对负载转矩的大范围变化和非初始速度也有满意的控制效果。
能模仿人的决策和推理模糊控制行为。反模糊化实现量化和反模糊化。有很多反模糊化技术,例如,大化反模糊化,中间平均技术等。输出结点的权重调整迭代不同于隐藏结点的权重调整迭代。通过使用反向传播技术,能得到需要的非线性函数近似值,该算法包括有学习速率参数,对网络的特性有很大影响。些模糊控制器不仅用来取代常规的PI或PID控制器,同时也用于其他任务
(作者: 来源:)