无论是生物制药大规模分离纯化还是药l物分析、食品检测、环境监测、石油化工产量控制、生命科学研究等都离不开色谱技术。色谱填料是色谱系统的心脏,因此被誉为色谱“芯”。改革开发以来,色谱领域的基础研究取得突飞猛进的进步,发表文章数量位居世界第l一,但无论是用于工业分离纯化还是实验室分析检测的色谱填料和色谱柱基本依赖进口,色谱产业长期处于缺“芯”状况。而且几乎所有重大色
多孔核壳结构硅胶
无论是生物制药大规模分离纯化还是药
l物分析、食品检测、环境监测、石油化工产量控制、生命科学研究等都离不开色谱技术。色谱填料是色谱系统的心脏,因此被誉为色谱“芯”。改革开发以来,色谱领域的基础研究取得突飞猛进的进步,发表文章数量位居世界第
l一,但无论是用于工业分离纯化还是实验室分析检测的色谱填料和色谱柱基本依赖进口,色谱产业长期处于缺“芯”状况。而且几乎所有重大色谱理论的创建,新的色谱分离分析模式的建立,新型色谱填料技术的发明,及关键产业化技术突破都与14亿人口无关。这对于拥有
l多色谱领域专职研究人员,色谱文章多年位居世界第
l一的来说是比较尴尬的。纳微科技将给大家讲解纳微科技是如何去破
l解这一局面。

反相色谱是比较常用的色谱分离模式,占到了全部分析色谱的70%左右。通常只需优化流动相组成就可实现对大多数有机化合物和多肽的分离分析。反相硅胶色谱填料的制备方法比较简单,主要是通过硅胶表面羟基与带不同烷
l基链或试剂键合。其中C4、C8和C18 硅胶键合相是使用比较广泛的反相色谱填料。反相色谱填料的研究是朝着柱效高、重现性好、分析速度快、制备方法简单、硅羟基掩蔽完全、选择性好、pH使用范围宽、寿命长等目标进行。反相硅胶色谱填料发展主要是两方面:一方面是制备越来越丰富的键合相以满足HPLC 越来越广的分离选择性的要求;另外一方面是解决反相色谱填料表面残留硅羟基带来拖尾、pH适用范围受限、及使用寿命短等问题。反相色谱填料制备的过程中, 由于位阻原因,硅胶表面的硅羟基不可能全部与试剂反应,残留的硅羟基在反相分离过程中会与极性分子形成非特异性吸附,导致
l极性化合物尤其是碱性化合物色谱峰变宽,甚至严重拖尾,柱效下降等。另外残留硅羟基还会影响硅胶色谱填料的耐酸碱性,并限制其pH使用范围,缩短填料使用寿命。因此开发有效封尾(封端)技术以减少或消除残留硅羟基从而改善反相色谱填料性能是色谱填料研究的重要方向之一。另外在封端过程中引进带正电荷的功能基团也可以屏蔽硅羟基对碱性化合物非特异吸附。
其它色谱填料除了反相、正相、HILIC、手性及SEC外,硅胶还用于离子交换、疏水及亲和色谱分离和分析。但由于离子交换、疏水及亲和色谱填料主要用于生物分离分析,因此具有化学稳定性好,耐酸碱性宽的聚
l色谱填料更具有优势。目前市场上离子交换、疏水及亲和色谱填料基本上都是基于高交联度的多孔或无孔聚
l色谱填料。硅胶色谱柱填料作为HPLC的核心,一直是色谱研究中关键的部分. 提高色谱填料的柱效、选择性、峰容量和使用稳定性, 增大填料的pH 使用范围、延长填料使用寿命, 具有多种分离模式将成为色谱填料的发展方向。
(作者: 来源:)