确定系统的报警点
根据本节2)所得等效氦气漏率和3)所得系统分流因子,即可确定工件的报警点:
Q= QHe/Q3。
氦检漏系统校准
氦检漏系统在使用一段时间后,检漏仪可能由于环境等其他因素的影响,系统检测漏率会出现漂移。因此,需要定期对系统校准。系统校准分为内部校准和外部校准。
1)内部校准
内部校准即是对检漏仪自身的校准,执行内部校准需要准备一个漏率已知的
氦质谱真空箱检漏系统
确定系统的报警点
根据本节2)所得等效氦气漏率和3)所得系统分流因子,即可确定工件的报警点:
Q= QHe/Q3。
氦检漏系统校准
氦检漏系统在使用一段时间后,检漏仪可能由于环境等其他因素的影响,系统检测漏率会出现漂移。因此,需要定期对系统校准。系统校准分为内部校准和外部校准。
1)内部校准
内部校准即是对检漏仪自身的校准,执行内部校准需要准备一个漏率已知的标准漏孔对检漏仪进行校准。由于每款检漏仪校准方法各不相同,限于篇幅,本文不作详述。值得一提的是,一些检漏仪会内置标准漏孔。内置标准漏孔在使用一段时间后,漏率会衰减。因此需要找专门计量单位对内置漏孔进行校准,通常漏孔每年校准一次。
2)外部校准
外部校准即是对整个检漏系统校准,系统使用一段时间后,系统的分流因子可能会发生改变,因此需要定期使用标准漏孔来校准系统,以确定分流比是否已经改变。如果改变需要适当调整系统的报警点。
采用真空压力法检漏时,需要将被检产品整体放入真空密封室内,真空密封室与辅助抽空系统和检漏仪相连,被检产品的充气接口通过连接管道引出真空密封室后,再与氦气源相连,当被检产品表面有漏孔时,氦气就会通过漏孔进入真空密封室,再进入氦质谱检漏仪,从而实现被检产品总漏率的测量。
真空压力法的优点是检测灵敏度高,能实现任何工作压力的漏率检测,反映被检件的真实泄漏状态。
真空压力法的缺点是检漏系统复杂,需要根据被检产品的容积和形状设计真空密封室。这里需要说明在检漏过程要求确保充气管道接口无泄漏,或者采取特殊的结构设计将所有充气管道连接接口放置在真空密封室外部。
真空压力法的检测主要应用于结构简单、压力不是特别高的密封产品,如电磁阀、高压充气管道、推进剂贮箱、天线、应答机、整星产品等
自动化真空箱氦检氦检工艺的探索与实践
根据目前氦检系统的种种不足,我们优化了氦检设备布局,改善工件流水线的物流走向,把真空箱改为隧道式结构。设备主要由真空箱检漏系统;充高压气体、抽空、充氦三合一装置;空调两器输送线;回收系统;电器控制系统等组成,具体构成如下:
真空箱检漏系统主要由检漏仪、真空箱体、真空泵组、真空测量装置、真空阀门、气动开门装置、安全光栅、不锈钢管道和机架等组成。
充高压气体、抽空、充氦三合一装置和回收系统主要由电磁阀、真空泵、储气罐、压缩机、压力和真空测量装置以及管道等组成,能对工件进行大漏检测试验,并进行充氦回收等处理。
空调两器输送线主要由铝型材、三倍速链条、驱动电机、升降机、辊筒、工装板等组成。
真空检漏的具体方法
为了方便说明真空检漏方法,我们以真空炉为例进行真空检漏。真空炉主要由机械泵、罗茨泵、扩散泵、前级管路、炉体等几部分组成,真空炉的生产中为常见问题是极限压力合格,而升压率不合格,或者是两者都不合格,比较少见的是升压率合格但极限压力不合格。
这种情况通常存在大于等于9.9×10-4 Pa·m3/s的较大漏点,检漏步骤为:
①用内径0.5mm左右的针头从机械泵到炉体的喷吹一遍,会很快发现漏点,这时发现的漏点都较大,然后应立即焊接处理或用封泥封堵,一旦封堵成功,真空度和检漏仪灵敏度会明显提高。
②第二遍检漏,进行第二遍检漏时速度要较遍慢些,重点检查表面不规整的焊口、法兰接缝处、动密封处、热电偶密封、电极、线圈、水套、各种胶圈处等部位。具体步骤与极限压力不合格、升压率合格的检漏方法相同。
综上三种问题,通过外部检漏通常都会解决,但在多遍检漏后问题若是仍然存在,我们就应该考虑是否存在内部漏点。笔者发现,内漏大多来源于各种充气阀。若要验证,可以在阀门保持关闭的状态下,将阀门的保护气体一端法兰打开一缝隙,充入氦气检查是否漏气,若不漏气,再将阀门连接好后立即充入保护气体到管路中,如果这时检漏仪漏率值上升,那么就可以确定充气阀泄漏是真空指标不合格的原因。
(作者: 来源:)