汽车零部件电泳磷化除渣
阴极电泳涂装前处理的目的是去除被涂构件上的异物, 提供电泳涂装要求的良好基底, 以保证涂层具有良好的防腐蚀性能和附着力。
前处理主要设备有:密封室、各工艺槽、加热系统、管路系统、油水分离系统、加料系统、磷化除渣系统、磷化酸洗系统等。
磷化工序是提高零部件耐腐蚀性的有效方法, 被用在电泳涂装线的前处理中。没有经过磷化处理的
阴极阳极电泳漆加工
汽车零部件电泳磷化除渣
阴极电泳涂装前处理的目的是去除被涂构件上的异物, 提供电泳涂装要求的良好基底, 以保证涂层具有良好的防腐蚀性能和附着力。
前处理主要设备有:密封室、各工艺槽、加热系统、管路系统、油水分离系统、加料系统、磷化除渣系统、磷化酸洗系统等。
磷化工序是提高零部件耐腐蚀性的有效方法, 被用在电泳涂装线的前处理中。没有经过磷化处理的汽车零部件阴极电泳涂膜耐盐雾性约400~500 h , 经过磷化处理的汽车零部件阴极电泳涂膜耐盐雾性720 h以上。磷化膜质量的好坏, 直接影响金属表面耐腐蚀性, 并对下面的涂装生产工序(如电泳)产生影响。影响磷化膜的多种因素中, 磷化渣是主要因素之一, 即伴随着磷化膜的形成, 也产生不溶性的磷酸铁沉淀 。同时, 由于磷化液的配置比例不当, 还会导致过量的磷酸锌沉淀出来, 形成另一部分磷化渣。磷化除渣技术就是将磷化液中的磷化渣清除掉, 保证磷化膜的质量, 提高零件的耐腐蚀性。磷化除渣技术
磷化膜质量的好坏, 直接影响金属表面耐腐蚀性, 并对电泳工序产生影响, 磷化渣是影响磷化膜质量的重要因素之一。磷化渣的主要成分是磷酸锌和磷酸铁的混合物, 它是磷化液与金属表面发生化学反应时必然产生的产物之一。首先铁被溶解, 溶解出来的铁离子, 一部分成为磷化膜的组成部分, 另一部分生成不溶性的磷酸铁从溶液中析出。当金属表面与溶液中的游离酸反应 , 表面的PH值会上升, 表面层的磷酸锌溶液被中和, 从而使磷酸锌结晶沉积在金属表面。如果反应过程控制不严, 就可能发生过中和现象, 从而导致过量磷酸锌沉析出来形成富锌磷化渣。
磷化渣在溶液中含量过高, 就会附着在工件上, 影响磷化膜性能。电泳涂装工艺要求磷化膜高度洁净, 不允许沉渣被带入电泳槽 , 否则会破坏槽液的稳定性。利用磷化除渣技术净化磷化液中的磷化渣 ,可使磷化沉渣在磷化液中的含量控制在允许范围内。
汽车底盘部件腐蚀行为研究,值得学习(一)
目前,汽车年产量,汽车底盘作为汽车的三大件之一,其腐蚀具有不可避免性,因此研究其耐蚀性和不断发展新的耐蚀底盘材料是一项“不朽”的课题。随着新一轮科技革命的深入推进和汽车强国战略的实施,如何提高汽车底盘的耐腐蚀性以保障其使用寿命及安全性在材料科学领域成为研究热点。
汽车底盘部件腐蚀机理及其影响因素
1.1汽车底盘部件的腐蚀机理
我国汽车工业发展迅速,但汽车腐蚀问题日趋显著,其中汽车底盘腐蚀为严重。腐蚀类型包括大气腐蚀、电化学腐蚀和冲击腐蚀等,主要为电化学腐蚀和冲击腐蚀。
1.1.1 大气腐蚀
大气腐蚀是指金属在大气环境条件下的腐蚀,汽车底盘的大气腐蚀主要原因是金属或合金表面形成的水膜溶入金属离子、腐蚀性气体。不锈钢、铝合金底盘部件常常因Cl-破坏其表面氧化膜而发生点蚀。温度和湿度是影响汽车底盘部件大气腐蚀的两个重要因素,平均温度越高,金属腐蚀越快,与内陆地区相比沿海地区相对湿度较大,汽车底盘部件腐蚀相对严重。
1.1.2 电化学腐蚀
汽车底盘的电化学腐蚀主要为电偶腐蚀和缝隙腐蚀两种。电偶腐蚀是两种不同的金属相互接触且同时处于电解质中所产生的电化学腐蚀。汽车底盘部件难以避免异种金属焊接结构及双金属的装配,这些位置常发生严重的电偶腐蚀。其缝隙腐蚀是在缝隙及隐蔽区域发生的局部腐蚀,汽车底盘存在较多的紧固件和活动件,其狭小的缝隙容易残留电化学介质,电化学介质长时间的残留对汽车底盘关键部件产生的缝隙腐蚀。
1.1.3 冲击腐蚀
在汽车行驶过程中,汽车底盘长期受到地面泥浆、碎石的冲击。底盘部件表面膜层常常因飞起的碎石冲击而破坏损伤,导致底层金属在空气中。金属表面因泥浆沉积、积水冲刷而发生腐蚀破坏,锌在碱性泥浆中易生成ZnO,泥浆的流动性较小,腐蚀产物不能立即转移,腐蚀产物沉积量逐渐增大,会有难溶物产生,腐蚀速度逐渐减缓。
汽车轻量化钢材及零部件表面处理技术的发展趋势(二)
一些低碳钢或低碳微合金钢作为汽车用的高强度钢,是经两相区热处理或控轧、控冷而得到的新型高强度钢材料,在基体铁素体的晶界或晶内弥散分布着硬质相马氏体,从而得到了好的钢铁材料综合性能,而用于汽车的前、后内纵梁等结构安全零部件。
多相合金钢主要是由细小的铁素体和大量的马氏体、贝氏体硬质相构成,含铌、钛等元素,通常是由于马氏体、贝氏体和析出强化的复合作用,使得合金钢材料强度高达800~1000 MPa,还具有较高的成形性和能量吸收能力,特别适合用于汽车的防撞杆、保险杠等零部件的制造。
一些汽车厂商通过优化汽车各个部分的结构设计,使汽车部件用高强度钢材的各处承载截面及钢材厚度更加合理;并且改进汽车发动机、底盘、内饰等零部件的结构,更进一步减轻汽车零部件及整车重量。可以说钢板的高强度化在汽车轻量化中做出了重要的贡献。
在过去的20年,使用高强度钢的汽车车身设计得到了的增长,目前仍然是集中在提高钢铁材料的强度和延展性,作为汽车轻量化设计的主要驱动力。未来的发展则不仅于强度和延展性,还可推广到更多范畴,特别是钢板的成形性,因为它依赖于汽车制造过程中应用的特定成形过程,需要不同的特性要求,如局部和全部成形性的加工设计。这将已知的材料概念扩展到新的维度,如均匀伸长、n值、拉伸翻边能力、弯曲角、氢脆等。
当然,在满足汽车轻量化的同时,还要保证汽车的安全性,可以采取调节汽车用高强度钢板的厚度,来提高汽车零件的抗变形性能,减缓碰撞冲击性,扩大钢材的弹性应变区等措施。汽车高强度钢板进行评估车辆碰撞安全性能,从结果中提取汽车结构变形、内部能量、接触力、侵入力和加速度等对整车结构耐撞性的影响。在车辆碰撞实验中发现的高强度钢材料凭借其优异的性能,在车辆碰撞安全性能方面具有相当大的发展潜力。
(作者: 来源:)