PCR原理
DNA的半保留copy是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复1制成同样的两分子拷贝。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外copy。
高保真RT-PCR试剂盒
PCR原理
DNA的半保留copy是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复1制成同样的两分子拷贝。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外copy。
但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。
耐热DNA聚合酶-Taq酶的发现对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。
PCR技术的基本原理
PCR技术是在模板DNA、引物和四种dNTP等存在的条件下.依赖于DNA聚合酶(T aq酶)的酶.
促合成反应。其具体反应分三步:变性、退火、聚合。以上三步为一个循环,每一 循环的产物DNA又可以作为下一个循环模板,数小时后,介于两个引物之间的目的DNA得到了大量的copy,经25~ 30次循环DNA数量可达2x1067拷贝数。
锚定PCR(Anchored PCR. APCR技术.
用酶法在一通用引物反转录cDNA3'-末端加上一段已知序列,然后以此序列为引物结合位点对
该cDNA进行扩增,称为APCR.应用:它可用于扩增未知或全知序列,如未知cDNA的制备及低丰度cDNA文库的构建。
巢式PCR(NEST PCR枝术.
先用一对靶序列的外引物扩增以提高模板量.然后再用一对内引物扩增以得到特异的PCR带。
此为巢式PCR。若用一条外引物作内引物则称之为半巢式PCR。为减少 巢式PCR的操作步骤可将外引物设计得比内引物长些,且用量较少。同时在第yi次PCR时采用较高的退火温度而第二次采用较低的退火温度。这样在第yi次PCR时,由于较高退火温度下内引物不能与模板结合,故只有外引物扩增产物,经过若干次循环。待外引物基本消耗尽,无需取出第yi次PCR产物,只需降低退火即可直接进行PCR扩增。这不仅减少操作步骤。同时也降低了交叉污染的机会。这种PCR称中途进退式PCR( drop-in, drop-out PCR)上述三种方法主要用于少量DNA模板的扩增。
(作者: 来源:)