在直径为30纳米的孔隙中,导热系数则下降到约5 mW/m·K 。从而实现保温隔热的效果。它具有储电容量大、内阻小、重量轻、充放电能力强、可多次重复使用等优异特性。环保上世纪80年代,欧洲才开始注意到这种新材料。1993年,气凝胶被美国应用到宇航服、太空飞船、航天飞机等,在“和平”号空间站和美国“火星探路者”探测器都用到了气凝胶。由于材料内部形成的微孔直径小于空气分子的平均自由行程,分子间的碰撞传热
碳气凝胶
在直径为30纳米的孔隙中,导热系数则下降到约5 mW/m·K 。从而实现保温隔热的效果。它具有储电容量大、内阻小、重量轻、充放电能力强、可多次重复使用等优异特性。环保上世纪80年代,欧洲才开始注意到这种新材料。1993年,气凝胶被美国应用到宇航服、太空飞船、航天飞机等,在“和平”号空间站和美国“火星探路者”探测器都用到了气凝胶。

由于材料内部形成的微孔直径小于空气分子的平均自由行程,分子间的碰撞传热受到抑制,再加上热辐射遮蔽成分的作用,纳米绝热材料的隔热效果是传统隔热材料的4倍。因此孔隙内部所含气体的对流导热,成为一个关键导热途径。据研究,对流导热仅跟气体性质和孔隙大小有关。不同隔热材料用不同办法来降低材料对流导热。为了降低材料的密度,一般的隔热材料均采取制造孔隙的办法。

如今科学家有了气凝胶,这个问题就变得很简单了。它就像一个极其柔软的棒球手套,可以轻轻地消减彗星星尘的速度,使它在滑行一段相当于自身长度200倍的距离后慢慢停下来。科学家认为,彗星微粒中包含着太阳系中原始、古老的物质,研究它可以帮助人类更清楚地了解太阳和行星的历史。2006年,“星尘”号飞船将带着人类获得的批彗星星尘样品返回地球。气凝胶貌似“弱不禁风”,其实非常坚固。它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。
(作者: 来源:)