早期开发的变压吸附制氧设备的共同点有以下几个方面:
(1)大多采用高于大气压吸附、常压解吸流程,吸附塔有两个到四个;
(2)空气进入吸附塔前,经过脱水预处理;
(3)设备可靠性差,不能连续稳定运行,导致大部分设备报废;
(4)技术、经济指标落后。
20世纪90年代是我国变压吸附制氧技术突飞猛进向前发展的时期,变压吸附制氧技术逐渐成熟。
PSA变压吸附制氧系统
早期开发的变压吸附制氧设备的共同点有以下几个方面:
(1)大多采用高于大气压吸附、常压解吸流程,吸附塔有两个到四个;
(2)空气进入吸附塔前,经过脱水预处理;
(3)设备可靠性差,不能连续稳定运行,导致大部分设备报废;
(4)技术、经济指标落后。
20世纪90年代是我国变压吸附制氧技术突飞猛进向前发展的时期,变压吸附制氧技术逐渐成熟。
四十多年来变压吸附空分制氧技术的研究进展主要表现在两个方面:一是空分制氧吸附剂和其吸附理论的研究方面,二是空分制氧工艺循环过程的研究方面(Sircar,1994;Ruthven.Farooq&Knaebel, 1994)。国内对这项技术的研究尽管起步较早,然而在较长的一段时间内发展相对较缓。直至进入九十年代以来,变压吸附制氧设备的优越性才逐渐被国人认可,近几年各种流程的设备相继投产为各行各业带来了巨大的经济效益。PSA变压吸附制氧系统制氧机,生产氮气(或液氮)和、-氦、-氙等混合气体的一种成套设备。

对于实际的分离过程,还必须考虑空气中其他微量组分。二氧化碳和水在通常的吸附剂上的吸附能力一般比氮和氧都大得多,可在吸附床内填加合适的吸附剂(或利用制氧吸附剂本身)使其被吸附清除。
制氧装置所需要的吸附塔数目取决于制氧规模、吸附剂性能和工艺设计思路,操作时运行平稳性相对更好一些,但设备投资较高。目前的趋势是:使用制氧吸附剂尽量减少吸附塔数量并采用短操作周期,以提高装置的效率并尽可能节约投资。

(作者: 来源:)