施工问题
▌漏浆
现象:漏浆在水力学上称管涌,常见现象是护筒外水面冒出气泡或浑水,出现以上现象就意味着漏浆已发生。
处理方法:加水泥或振动护筒下沉。护筒下沉不超过1m,如果护筒下沉超过1m,或护筒突然下沉,应停止施工。
▌塌孔
现象:排渣量异常增加,钻机负荷突然加大或护筒内泥浆面突然有大量细密气泡产生等现象。
处理方法:出现塌孔应即刻停止钻进
正规学吊车技能培训
施工问题
▌漏浆
现象:漏浆在水力学上称管涌,常见现象是护筒外水面冒出气泡或浑水,出现以上现象就意味着漏浆已发生。
处理方法:加水泥或振动护筒下沉。护筒下沉不超过1m,如果护筒下沉超过1m,或护筒突然下沉,应停止施工。
▌塌孔
现象:排渣量异常增加,钻机负荷突然加大或护筒内泥浆面突然有大量细密气泡产生等现象。
处理方法:出现塌孔应即刻停止钻进,提上钻头,防止钻头被埋设。因为塌孔之后,被破坏土体的环拱作用突然消失,孔壁进入极不稳定的状态。此时回填土静置是的办法。
▌钢筋笼上浮
现象:钢筋笼下放时不能顺利到位,是长螺旋钻孔灌注桩施工中常见的问题,有时因钢筋笼太长,下到一半卡在孔内,既下不去又提不上来,从空口割断。
处理方法:
(1)打混凝土不到位,中途提钻过快或过慢,严格控制大混凝土的时间与其充盈系数确保混凝充盈系数在要求范围;
(2)坍落度过大或过小,检测混凝土坍落度是否满足要求,坍落度过大了,容易产生泌水、离析现象,在短时间内出现粗骨料下沉,水泥浆浮在上面。使钢筋笼下行阻力增大,导致钢笼不能到位;坍落度过小,仍然会增加下笼难度,因此在施工过程中必须将坍落度严格控制在18~22cm;
(3)钢筋笼质量太差或设计不合理,严格按图纸钢筋笼的规格,不出现龙筋过大问题,下放钢筋笼时应把钢筋笼底部做成尖行避免发生插帮现象;
(4)选用的振动锤功率要合适。钢筋笼下放到距孔口1~2m时,要靠带护筒的振动锤下送到设计标高,一般桩径400mm、桩长不超过10m的桩,选用1.8kW的振动锤即可满足要求;600mm桩径、桩长小于15m的基桩,选用2.2kW的振动锤为宜;
(5)检查钻头、钻杆直径是否满足要求。如果发现钻头、磨损严重,应及时补焊,在外缘镶合金块,确保孔径及保护层满足要求。使钢筋笼与孔壁间有足够的空间,使钢筋笼顺利到位。
常见质量问题
(1)测量放线中出现错误,这种错误会令整个建筑出现错误或者令桩基出现较大的偏差。
(2)单桩承载力不满足建筑桩基设计标准。
(3)桩体倾斜过大。
(4)预制桩的接头发生断离。
(5)灌桩的过程中所引发的的断桩事故。
(6)在验收过程中发现桩位具有过大的偏差。
(7)由于混凝土的质量或者操作引发的桩体出现夹泥、离析及强度不达标等问题。
(8)标高不足。
▌处理措施
补沉法
预制桩入土深度不足时,或打入桩因土体隆起将桩上抬时,均可采用此法。
补桩法补桩法
就是在会同设计、监理以及业主的意见,根据设计单位出具的补桩方案进行补打,但此种方法投资大、工期长,很难被各方共同认可。
补送结合法
采用分节连接的方式将桩打入基础中时,若桩体质量不达标,那么在进行沉入的过程中,就有可能使得连节点脱开,这时对于桩基的处理就可以采用补送结合的方式。
对于有疑点的桩,应当进行复打,令该桩下沉,这就可以令脱节的桩连接再次顶紧,令接头具有竖向承载力;可以进行补桩,适当的补进一些完整的桩,使得基础不但可以满足承载力要求,同时还能够提高建筑基础的荷载。
纠偏法
若是在打桩过程中发现桩身出现倾斜并且桩长不长,且完好并未断裂,或由于基坑的开挖而导致的桩身出现倾斜但是桩体仍旧完整的,可以对桩身进行局部挖开,然后使用千斤顶对桩身进行纠偏。

筒钻:
适用于有明显分层的中等风化砂岩(取芯概率高),以及硬质岩层的环切。在密实度较高的土层,或是部分软岩地层,由于选择摩擦式钻杆造成打滑时,可尝试使用筒钻处理。
嵌岩螺旋钻头:
适用于孔内漂石、孤石硬质岩层的破碎等。对于部分胶泥地层,中等密实程度的卵石土,在选用土层双底捞砂斗无法钻进时,可尝试使用螺旋钻头进行钻进。
双层筒钻:
适用于粒径为200~500mm的卵、漂石层钻进。双层筒钻其采用一种全新的钻进思想 “挤”。即将大小不一的碎、卵石在筒内挤密后带出孔外。设计时,根据成桩孔径设计外筒直径,根据卵石的平均粒径设计内筒直径,内筒比外筒高。此钻具已在国内得到广泛应用,钻进效率及钻齿损耗方面,明显优于其他钻具。
土层单底捞砂斗:
此钻头与双底捞砂钻斗功能类似,优势在于其有侧进土口,而且不需反钻关斗门,对于土层的钻进效率更高。劣势在于其重量较轻,对于部分硬质土层时,特别是配合摩擦杆使用时,可能出现打滑不进尺的现象,严重影响钻进效率。
土螺旋钻头:
仅适用于小桩径,内聚力较大的粘土层。优势在于,钻头高度可达4m,单次进尺量大,而且能有效的避免其它钻头在此类工程中卸渣困难的问题。推荐在适用范围内使用。

全套管钻机+旋挖钻机钻孔咬合桩施工工法
钻孔咬合桩围护结构主要采用全套管钻机,通过套筒护壁钻进成孔,使用超缓凝混凝土,使得钢筋砼桩相邻桩体能够被套管切割而相互咬合,排列而成一个整体的墙体起到良好的止水效果,90年代在我国出现的新型深基坑支护的围护结构。
全套管钻机又称贝诺特(Benoto)钻机,由法国贝诺特公司于20世纪50年代初开发和研制而成,随后日、德、英、意等国引进和研制,机种和施工方法均有很大发展,产品不断更新换代,在海内外广泛采用,截止到1997年12月,日本已生产摇动式全套管钻机770台,全回转式全套管钻机433台。据日本基础建设协会1993年对31家施工单位的10.1万根灌注桩的调查,全套管工法占26%。目前在香港全套管钻机的成桩数的市场份额约占45%。
我国于二十世纪七十年始引进咬合桩工艺,九十年代中期由昆明捷程桩工公司首先在我国开始研制MZ系列摇动式全套管钻机,简称磨桩机(桩径为0.8、1.0和1.2m)。在昆明、温州、深圳、北京、南京、杭州及天津等地深基坑支护工程中采用捷程MZ全套管钻机施工咬合桩逐渐得到广泛应用;但MZ套管钻机在地下水丰富的密实的粉细砂地层中,冲抓锥受机械设备性能限制难以抓土,即使抓上的少量砂土也在提升时被地下水从抓锥的缝隙中冲漏下,因此无法成孔;且套管难以下压,套管超前入土深度不够,易发生“管涌”现象。为此研究采用旋挖钻机+套管钻机相结合的新工法,解决了上述施工难题,该咬合桩的适用范围进一步扩大。
(作者: 来源:)