图2量程可调式传感器改进部分模型Fi霍尔式磁性液体微压差传感器静态参数优化2.1模型和Pareto解方法对图1中磁性液体微压差传感器模型进行,新型霍尔式磁性液体微压差传感器的初始结构参数如表1所示。表1传感器结构参数Ta传感器尺寸参数数值中间永磁体与两侧永磁体初始间距lg15中间永磁体长度lh10中间永磁体宽度dc6环形永磁体长度lm10玻璃管直径d08运用磁场有限元软件来计算传感
滚圆机原理
图2量程可调式传感器改进部分模型Fi霍尔式磁性液体微压差传感器静态参数优化2.1模型和Pareto解方法对图1中磁性液体微压差传感器模型进行,新型霍尔式磁性液体微压差传感器的初始结构参数如表1所示。表1传感器结构参数Ta传感器尺寸参数数值中间永磁体与两侧永磁体初始间距lg15中间永磁体长度lh10中间永磁体宽度dc6环形永磁体长度lm10玻璃管直径d08运用磁场有限元软件来计算传感器玻璃管内部的磁场,建立模型。
其中薄膜中N元素的相对含量由纯水亚相的1.06%增加至PAA-Azo亚相的3.64%,归因于CD-CHOL/PAA-Azo复合膜中PAA-Azo分子的N元素的增量。此外,将两种薄膜的C1s特征峰进行分峰考察不同化学价态的碳元素的相对含量,如图5(b)和5(c)所示。位于284.8eV处的峰归属于C—C,CC以及C—H键,287.2eV处的峰归属于CO键。可以清楚看出,CD-CHOL/PAA-Azo复合膜的C—C与CO基团的相对含量均相比CD-CHOL水相膜中有所增加,达到76.2%以及1.5%

综合来说,100~150目的样品熔制效果好于未筛分的及筛分的其他粒度。图1不同粒度硅砂配合料制备的高应变点玻璃显微图像从图3中可以明显的看出未筛分硅砂熔制的玻璃样品的均匀性差,采用筛分过的3个粒度硅砂熔制的玻璃样品均匀性均好于未筛分的;而100~150目的样品熔制的玻璃样品均匀性又优于60~100目、150~230目的样品。此现象产生的原因为:玻璃配合料中硅砂的粒度越小,容易在配合料高应变点玻璃熔制、澄清效果的影响143硅砂粒度为150~230目时,由于超细粉的粒径非常小,表面积就越大,与其它反应物的接触的面积就越大

(作者: 来源:)