废水的处理周期过长,严重影响到生产,且废水处理的效果不佳,所需投入的成本较大,这也造成很多厂家不愿意承担,而采取偷排漏检的不合规排放,对后续的环境治理造成不可挽救的后果。混合流体中密度较小的液相则通过分离器与反应室之间的间隙进入到深度净化区,液相在深度净化区内进一步发生生物反应,产生沼气的同时形成液相上升流速,沼气随液相上升到上部,被分离器收集后由气流管道导入沼气收集器内。在厌氧过
高难度废水处理
废水的处理周期过长,严重影响到生产,且废水处理的效果不佳,所需投入的成本较大,这也造成很多厂家不愿意承担,而采取偷排漏检的不合规排放,对后续的环境治理造成不可挽救的后果。混合流体中密度较小的液相则通过分离器与反应室之间的间隙进入到深度净化区,液相在深度净化区内进一步发生生物反应,产生沼气的同时形成液相上升流速,沼气随液相上升到上部,被分离器收集后由气流管道导入沼气收集器内。在厌氧过程中,生成相为厌氧阶段的速度控制步骤(瓶颈),所以一定浓度的SO42-存在会使厌氧阶段BOD的去除失去功效,从而导致系统恶化,放流水无法达标。
气流管中的压力小于流化反应区的压力,沼气通过分离器从液相中分离出来并从气流管导入到沼气收集器中,并通过接水封装,而混合流体中密度较大的颗粒污泥,则在重力作用下回流到流化反应区的底部,与底部的导入的高浓度废水混合,从而实现了流体在流化反应区内部的循环。随着石油、化工等行业的发展,产生的工业废水成分越来越复杂,废水的处理降解难度也越大,采用现有的工艺对废水进行处理的效果不理想,处理后的废水达不到排放标准,需要进行多次循环处理才能达标。脉冲厌氧反应设备处理后的废水从出水管导入到生物倍增设备,在生物倍增设备中通过控制溶解氧和污泥沉降比同步反硝化降磷脱氮,使得生物处理载体中所驯化培养的微生物数量极大化、菌群特殊化、降解化,从而有效降解废水中的有机污染物达到生物平衡。

目前城市河流、湖泊整治中,注重清淤,堤岸,绿化和截污等工程,而不重视底泥和水体生物原位修复,更不重视河流、湖泊生态体系建立,这样导致城市河流、湖泊整治中边治边黑,边黑边治,不能从根本上改善河流、湖泊水质和提高水体自净能力。废水处理技术能够很好的将高难度难降解废水的有害物质进行去除,保证废水处理效果的同时,有效的保护生态环境,给复杂的工业废水和生活废水排放提供了一个切实可行的技术方案,改善了现有废水处理的工艺,有利于实现废水的无公害化排放。深度净化处理后的污水则由排水口排出,深度净化区内的液相上升流速比流化反应区内的液相上升流速,对液相从流化反应区到深度净化区起到良好的缓冲作用。

(作者: 来源:)