型钢组合钢板桩技术武汉市某工程位于汉口后湖地区,该项目为一河流明渠改箱涵工程。围堰基坑开挖深度约5~7m,围堰为狭长型,长约420m,宽约42m。为确保河流的正常通流,该围堰项目分东西两个区块先后进行。该区域上部淤泥质土、淤泥质粘土层深厚达12m~15m,地质条件较差,围护结构初步采用上部放坡,下部拉森钢板桩结合钢支撑支护,在河流中间分区部位北侧采用填土挡土坝作为临时反压土坝。经大量的分析计算,在
拉森钢板桩打拔
型钢组合钢板桩技术
武汉市某工程位于汉口后湖地区,该项目为一河流明渠改箱涵工程。围堰基坑开挖深度约5~7m,围堰为狭长型,长约420m,宽约42m。为确保河流的正常通流,该围堰项目分东西两个区块先后进行。该区域上部淤泥质土、淤泥质粘土层深厚达12m~15m,地质条件较差,围护结构初步采用上部放坡,下部拉森钢板桩结合钢支撑支护,在河流中间分区部位北侧采用填土挡土坝作为临时反压土坝。经大量的分析计算,在局部软土层深厚区块采用拉森钢板桩难以满足强度及稳定性的要求,而其他支护形式如钻孔灌注桩等由于场地条件施工困难、造价昂贵,因而考虑采用组合型钢钢板桩这一支护形式,如下图支护剖面图。
图中所示,围堰内插为15m长H500X300型钢,围堰外侧为9m长4号拉森钢板桩,在设计计算时,强度、变形及稳定性计算按H型钢单独作为支护结构的模型计算,拉森钢板桩的抗力可以作为安全储备;而围堰的止水全部由拉森钢板桩承担,为满足围堰的止水性能,拉森钢板桩插入坑底以下软黏土地层不小于4m,且满足渗流稳定性的要求。因而图中H型钢的长度要远长于拉森钢板桩的长度。
为确保拉森钢板桩与H型钢的紧密贴合,满足组合型钢钢板桩整体性能,施工时必须确保质量,外侧钢板桩通过锁扣紧密搭接,施工H型钢时与钢板桩贴合紧密,在H型钢的上部翼缘板与拉森钢板桩满焊焊接牢固(如图组合型钢钢板桩连接节点),以确保H型钢与拉森钢板桩的整体变形,提高组合型钢钢板桩的整体抗力性能。
钻爆法
设计依据:松弛荷载理论(1920’s)
稳定的围岩具有自稳能力;
不稳定的围岩则会坍塌,需支护结构来支承;
{支承荷载}〓{一定范围内因松弛且可能塌落的岩体重量}
注重结果与处理方法
技术要素:刚性支护(钢木构件支撑),一般需撤换为整体式厚衬砌(永支护)。
按不利围岩组合荷载设计临时支护与永衬砌不太符合实际工作状态。
全断面掘进机法
装备:全断面掘进机(TBM)
原理:电动机驱动主轴旋转→对刀盘施压贴紧岩壁→利用刀盘上的盘形滚刀破碎岩石→巷道全断面一次成型
优点:月进尺为钻爆法的1.5~2.0倍,超挖量小于5%,衬砌费用大幅节约,施工安全性与岩层适应性好
适用对象:硬岩长大隧道(尤其适用于岩石破碎、高山缺氧、严寒等恶劣气候条件地区的隧道开挖)
盾构法
装备:盾构机【主体为可移动的高强度钢套壳(盾壳)】
盾构机是在软土、软岩和破碎含水地层中修建隧道的设备。盾壳在构筑永衬砌之前支承地层,不需临时支护。
盾构机是根据隧道与地基情况量身设计、制造或改造的。
施工断面:多为圆形,也有矩形、马蹄形、半圆形和异型。
适用对象:城市地铁、水下隧道、水工隧道等。
八大基坑支护类型及优缺点汇总
地下连续墙优势:刚度大,止水效果好,是支护结构中强的支护形式。劣势:造价较高,对施工场地要求较高,施工要求设备。适用:地质条件差和复杂,基坑深度大,周边环境要求较高的基坑。
SMW工法优势:施工时基本无噪声,对周围环境影响小;结构强度可靠,凡是适合应用水泥土搅拌桩的场合都可使用;挡水防渗性能好,不必另设挡水帷幕;可以配合多道锚索或支撑应用于较深的基坑;此工法在一定条件下可代替作为地下围护的地下连续墙,采取一定施工措施成功回收H型钢后则造价大大降低,在水乡片区有较大发展前景。适用:可在淤泥土、粉土、粘土、砂土、砂、砾、卵石等土层中应用。
注意事项:因一般设置单排搅拌桩,施工时需保证搅拌桩的垂直度,及搭接厚度,否则极易导致下部开叉漏水涌砂。H型钢需选质量可靠型材,施工时涂抹减摩剂,否则较难回收且易变形,影响周转率。以上仅仅对常规支护进行比较分析。因同一个基坑项目的四周环境可能不同;开挖深度也可能不同;地质条件、地下水条件也可能不同;使用的荷载可能不同。所以一个基坑的支护类型需根据经验、建设单位要求、周边环境、地质情况限制而采用以上一种或多种支护型式的组合。基坑工程虽为临时支护,亦需慎重对待,安全为主。
(作者: 来源:)