氯化钠掺杂PEDOT:PSS实现高填充因子钙钛矿太阳能电池
近年来, 以CH3NH3PbI3为代表的有机-无机杂化钙钛矿太阳能电池因其突出的光电性能和高光电转换效率而受到研究者们越来越多的关注。其中PEDOT:PSS作为一种传统的空穴传输材料,其具有高透光率、良好的热稳定性以及和钙钛矿匹配的级,被广泛的应用于反式的平面钙钛矿太阳能电池结构中。但是,以往的研究很少关注PED
PEDOT价钱
氯化钠掺杂PEDOT:PSS实现高填充因子钙钛矿太阳能电池
近年来, 以CH3NH3PbI3为代表的有机-无机杂化钙钛矿太阳能电池因其突出的光电性能和高光电转换效率而受到研究者们越来越多的关注。其中PEDOT:PSS作为一种传统的空穴传输材料,其具有高透光率、良好的热稳定性以及和钙钛矿匹配的级,被广泛的应用于反式的平面钙钛矿太阳能电池结构中。但是,以往的研究很少关注PEDOT:PSS的表面属性对钙钛矿晶体生长和器件性能的影响。电容器:用作负极材料,给固体电解电容器的性能带来革命性的进步,具体体现在:电导率高。
这一方法不仅改善了PEDOT:PSS本身的导电性,同时通过其表面分布的NaCl小晶体改善了上层钙钛矿薄膜的质量。通过这种简单的方式同时提高了填充因子(高达81.9%)和开路电压,使钙钛矿电池的性能从平均的15.1%提升到了17.1%,g达到18.2% 且基本没有出现迟滞现象。通过系统的分析对比阐明了电池性能提升的本质可归因于两方面: ① NaCl的掺杂导致了PEDOT和PSS的相分离,从而提高了电导率和空穴提取能力;PEDOT:PSS的应用领域(1)抗静电涂层塑料及玻璃在干燥的空气中容易产生静电荷,必须进行抗静电处理,抗静电是PEDOT/PSS作为导电涂料早应用的领域。② 基本一致的NaCl和MAPbCl3晶格参数(不匹配度<2%)和 (001)面匹配的氯原子排列使得PEDOT:PSS 表面分布的NaCl作为种子诱导形成了均匀的具有一定(001)取向的钙钛矿薄膜。该研究能很好的与印刷技术相兼容,从而实现和晶体取向可调的钙钛矿太阳能电池的量产。
导电聚合物的导电机理
聚合物分子导电应具备的必要条件是:分子链应该是一个大竹共轭体系(共轭双键或共轭与带有未成键P轨道的杂原子N、s等偶合)与金属导电需要自由电子和供电子运动的轨道一样,聚合物的导电也需要有电荷载体和可供电荷载体自由运动的分子轨道,由于大多数聚合物本身不具有电荷载体,导电聚合物的所必需的电荷载体是由”掺杂”过程提供的。关于掺杂后导电聚合物的导电机理,目前比较成熟的观点可用下图(二)加以简要说明。2)与PSSH溶液混合,在混合溶液中加入碱(包括氢y化钾,氢y化钠,氢氧化钙,氢y化钡),搅拌得到蓝色的混合液。
研究者对PEDOT:PPS:CFE电极进行了机械柔韧性测试。在3 mm弯折曲率半径下,该电极相较ITO电极表现出良好的柔韧性。通过对不同薄膜的极限挠度曲线测试,可以发现PEDOT:PPS:CFE的杨氏模量明显降低,从而减少了透明导电薄膜在弯折情况下所受到的机械应力。这一结论也通过有限元应力模拟和弯折前后电极的显微镜照片得到证实。兼具金属与聚合物的特性,给众多应用领域带来崭新的发展机会,这在电子工业领域尤为明显。
(作者: 来源:)