3Kw微纳米曝气机应用方案
微纳米气泡直徑为10μm至几十μm,其头发的直径,而且无法立即见到。因为该细微的气泡直徑,微纳米气泡具备与液體触碰的气泡的大的面积(汽液页面总面积),气泡的升高速率迟缓。汽液页面总面积越大,越非常容易将气泡中的汽体融解到液體中,因而它是将气泡中的汽体融解到液體中的关键要素。当气泡是球型时,汽液页面总面积的尺寸与气泡的直徑反比。因而,微纳米气泡的汽液
3Kw微纳米曝气机应用方案
3Kw微纳米曝气机应用方案
微纳米气泡直徑为10μm至几十μm,其头发的直径,而且无法立即见到。因为该细微的气泡直徑,微纳米气泡具备与液體触碰的气泡的大的面积(汽液页面总面积),气泡的升高速率迟缓。汽液页面总面积越大,越非常容易将气泡中的汽体融解到液體中,因而它是将气泡中的汽体融解到液體中的关键要素。当气泡是球型时,汽液页面总面积的尺寸与气泡的直徑反比。因而,微纳米气泡的汽液页面总面积比一般气泡大,气泡中的汽体能够 合理地融解在液體中。假定微纳米气泡的升高速率遵照斯托克斯基本定律,该基本定律叙述了在液體移动的小颗粒的个人行为。
u=gD2/18v
在其中u是微纳米气泡的升高速率,g是重力加速,D是气泡直徑,ν是动态性粘度系数。因而,微纳米气泡的升高速度气泡直徑的平方米成占比,而且当气泡直徑钟头,微纳米气泡的升高速率越来越十分小。比如,当在温度为20°C的水里转化成直徑为10μm的微纳米气泡时,微纳米气泡每钟头仅升高19.6cm并在水中滞留很长期。

微纳米气泡抑制生物膜产生
显示了在海水通过过程中引入空气微纳米气泡和氮微纳米气泡时,铝黄铜管内壁上的生物污染系数的测量值。 可以看出,空气微纳米气泡的引入增加了海水中的溶解氧浓度,了海水中的微生物,并促进了生物膜的形成。 另一方面,当引入氮气微纳米气泡时,结垢系数降低到仅通过海水时的结垢系数的约60%。 尽管停止引入氮气微纳米气泡后切换到海水流量时结垢系数(在这种情况下,溶解氧浓度为1.8 mg / L),但上述实验结果表明,引入氮气微纳米气泡结果表明,水流过程中的溶解氧浓度降低,有效抑制了生物膜的形成。

3Kw微纳米曝气机应用方案水产养殖
3Kw微纳米曝气机应用方案之所以开始引起人们的注意,是为了防止由于有害浮游生物而导致的鱼贝损失,这是鱼贝养殖中的一个问题)。 因此,3Kw微纳米曝气机应用方案被积极地应用于鱼类和贝类等水产养殖。 例如,在红鲷水产养殖中,已经证实消除了海水中溶解氧浓度的降低并且提高了生长效率。3Kw微纳米曝气机应用方案还用于食品加工中,以进行灭菌和清洁。 当前使用的一个例子是在鱼糕的制造过程中的消毒。 在该热灭菌过程中,一些耐热细菌的存在已成为质量控制中的问题。 但是,在这种情况下,确认了利用臭氧3Kw微纳米曝气机应用方案产生的自由基的杀菌,确认了可以延长鱼糕的保管期限。

(作者: 来源:)