图像处理和分析计算机通过图像处理软件对图像进行处理,分析获取其中的有用信息。如PCB板的图像中是否存在线路断路、纺织品的图像中是否存在疵点、文档图像中存在哪些文字等。这是整个机器视觉系统的。
图像采集利用光源照射被观察的物体或环境,通过光学成像系统采集图像,通过相机和图像采集卡将光学图像转换为数字图像,这是机器视觉系统的前端和信息来源。
相机输出的模拟视频信号
自动光学检测设备厂家
图像处理和分析计算机通过图像处理软件对图像进行处理,分析获取其中的有用信息。如PCB板的图像中是否存在线路断路、纺织品的图像中是否存在疵点、文档图像中存在哪些文字等。这是整个机器视觉系统的。
图像采集利用光源照射被观察的物体或环境,通过光学成像系统采集图像,通过相机和图像采集卡将光学图像转换为数字图像,这是机器视觉系统的前端和信息来源。

相机输出的模拟视频信号并不能为计算机直接识别,图像采集卡通过对模拟视频信号的量化处理将模拟视频信号数字化,形成计算机能直接处理的数字图像,并提供与计算机的高速接口。图像采集卡需要实时完成高速、大数据量的图像数据采集,必须与相机协调工作,才能完成特定的任务。除A/D转换外,图像采集卡还具备其他一些功能,包括:
接收来自数字相机的高速数据流,并通过计算机高速总线传输至系统存储器;
对多通道图像接收、处理和重构;
对相机及系统其他模块进行功能控制。
图像和视觉信息处理

随着PCB板密度增加以及元件尺寸的减小,元件贴装工艺的性能逐渐到达极限,提高贴装性能成为在大规模生产中实现高成品率的关键。造成成品率低的原因比较复杂,其中之一是贴装不能够完成得很好,因此为实现无缺陷组装经常需要对贴片机的X-Y数据进行调整。缺陷可能会由于各种原因而产生,如果不能迅速纠正,这些缺陷很快就会给制造商增加很多测试-调整-再测试工作量,从而产生限制工厂产量的“瓶颈”。

贴装设备供应商们已进行了大量卓有成效的工作,同时业界组织也对贴装系统特性作了规范,这些方法都试图通过一些与元件贴装精度、重复性及可靠性等相关的关键参数建立起一个标准的性能评估体系。然而目前这些方法主要注重于“级”工艺分析,或者只是针对使用标准玻璃封装和基板贴装系统的理想性能条件。虽然这些工作对建立机器性能测定标准是完全必要的,但理论性能与实际生产情况之间却有一定的差距。

(作者: 来源:)