测量金属屏蔽层电阻和导体电阻可以监视其受腐蚀变化情况,测量电阻比可以消除温度对直流电阻测量的影响。
5.2试验周期
交接试验
5.3试验方法
用双臂电桥测量在相同温度下的金属屏蔽层和导体的直流电阻
5.4试验判断
与投运前的测量数据相比较不应有较大的变化。当前者与后者之比与投运前相比增加时,表明屏蔽层的直流电阻增大,铜屏蔽层有可能被腐蚀;当该
东莞超高压电缆应用范围
测量金属屏蔽层电阻和导体电阻可以监视其受腐蚀变化情况,测量电阻比可以消除温度对直流电阻测量的影响。
5.2试验周期
交接试验

5.3试验方法
用双臂电桥测量在相同温度下的金属屏蔽层和导体的直流电阻
5.4试验判断
与投运前的测量数据相比较不应有较大的变化。当前者与后者之比与投运前相比增加时,表明屏蔽层的直流电阻增大,铜屏蔽层有可能被腐蚀;当该比值与投运前相比减少时,表明附件中的导体连接点的接触电阻有增大的可能。
6. 交叉互联系统试验
6.1交叉互联系统示意图
6.2交叉互联效果及构成
相比不交叉互联,金属护层流过的电流大大降低。
非接地端金属护层上蕞高鳡应电压为蕞长长度那一段电缆金属护层上鳡应的电压。
交叉互联必须断开金属护层,断口间与对地均需绝缘良好,一般采用互联箱进行电缆金属护层的交叉互联。
接地端金属护层通过同轴电缆引入直接接地箱接地;非接地端金属护层通过同轴电缆引入交叉互联接地箱,箱内装有护层过电压保护器限制可能出现的过电压。
保护接地箱
直接接地箱
交叉互联箱
6.3交叉互联性能检验
电缆外护套、绝缘接头外护套与绝缘夹板的直流耐压试验
试验时必须将护层过电压保护器断开,在互联箱中将另一侧的三段电缆金属套都接地,使绝缘接头的绝缘环也能结合在一起进行试验。
非线性电阻型护层过电压保护器试验
以下两项均为交接试验项目,预防性试验选做其中一个。
伏安特性或参考电压,应符合制造厂的规定。

设计要点
回填土的土质应对电缆外护层无腐蚀性。
施工要点
直埋电缆的上、下部应铺以不小于100mm厚的软土(不应有石块或其它硬质杂物)或沙层,并加盖保护板,其覆盖宽度应超过电缆两侧各50mm。
为了防止电缆遭受外力破坏,在电缆保护盖板上铺设塑料警示带。
直埋电缆在直线段每隔50-100m处、电缆接头处、转弯处、进入建筑物等处,应设置明显的方位标志或标桩。
监理要点
直埋电缆回填土前,应经隐蔽工程验收合格。并分层夯实。
巡视检查回填土质量,不得掺大石块、冻土块、冰雪回填。直埋电缆的上、下部应铺以不小于100mm厚的软土或沙层,并加盖保护板,其覆盖宽度应超过电缆两侧各 50mm,保护板可采用混凝土盖板或砖块。
巡视检查回填土应分层回填、分层夯实,夯实应均布坑口全部面积,夯实密度符合设计和规范要求。
巡视检查直埋电缆在直线段每隔 50m~100m处、电缆接头处、转弯处、进入建筑物等处,应设置明显的方位标志或标桩。
支架安装图图
3.3集水坑及排水处理
工艺标准
(1) 底板散水坡度应统一指向集水坑,散水坡度宜取0.5%左右。
(2) 集水坑尺寸应能满足排水泵放置要求。
(3) 坑顶宜设置保护盖板,盖板上设置泄水孔。
(4) 集水坑应根据电缆沟(电缆隧道)的平面尺寸及外形合理设置。
(1)排水可采用机械排水和自然排水,集水坑尺寸应满足排水方式的要求,并在图纸中标注。
(2)集水坑位于井室人孔正下方。
(3)集水坑上应设置井篦子。
(1)排水沟及集水坑应与侧壁保持足够距离,不影响基坑施工。
(2)地坪施工时做好结构泛水,保证表面散水畅通。
(1)在有地下水排出的隧道,必须挖凿排水沟,当下坡开挖时应根据涌水量的大小,设置大于20%涌水量的抽水机具排出。抽水机械的安装地点在导坑的一侧或另开偏洞安装,并用栅栏与隧道隔离;抽水设备宜采用电力机械,不得在隧道内使用内燃抽水机,抽水机械应有一定的备用台数。绝缘电阻下降表示绝缘受潮或发生老化、劣化,可能导致电缆击穿和烧毁。
(2)隧道开挖中预计要穿过涌水地层时,宜采用超前钻孔探水,查清含水层厚度、岩性、水量、水压等,为防涌水提供依据;如发现工作面有大量涌水时,要立即令工人停止作业,迅速撤离到安全地点。


(作者: 来源:)