建立数据库系统的目的,是为了实现对现实世界中各种信息的计算机处理。换言之,要实现计算机对现实世界中各种信息的自动化的处理,首先必须建立能够存储和管理现实世界中的信息的数据库系统。数据模型是数据库系统的中心和基础。任何一种数据库系统,都必须建立在一定的数据模型之上。由于现实世界的复杂性,不可能直接从现实世界中建立数据模型。
与实物模型不同,数据模型不是等比例模拟出来的真实事物,
数据模型定制案例
建立数据库系统的目的,是为了实现对现实世界中各种信息的计算机处理。换言之,要实现计算机对现实世界中各种信息的自动化的处理,首先必须建立能够存储和管理现实世界中的信息的数据库系统。数据模型是数据库系统的中心和基础。任何一种数据库系统,都必须建立在一定的数据模型之上。由于现实世界的复杂性,不可能直接从现实世界中建立数据模型。
与实物模型不同,数据模型不是等比例模拟出来的真实事物,而是一组能表示数据需求、数据结构的符号集合。
在房屋平面图中,中间有条线的矩形表示窗户,用直角扇形表示门。在数据模型中,用矩形框或圆角矩形表示实体;用线以及线上的符号表示实体之间的关系、基数或约束;用写在线上的词或词组表示标签,所有的这些符号组成了各种各样的数据模型。
数据模型结构主要分为数据结构、数据操作、数据约束。
1、数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据类型,如DBTG网状模型中的记录型、数据项、关系模型中的关系等。数据结构是数据模型的基础,不同的数据结构具有不同的操作和约束。
2、数据操作主要描述在相应的数据结构上的操作类型和操作方式。是操作算符的集合,包括若干操作和推理规则,用以对目标类型的有效实例所组成的数据库进行操作。
3、数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。约束条件可以按不同的原则划分为数据值的约束和数据间联系的约束;静态约束和动态约束;实体约束和实体间的参照约束等。
建立模型的步骤:
三、建立模型
在准备好的数据基础上,建立数据模型,这种模型可能是机器学习模型,也可能不需要机器学习等高深的算法。选择什么样的模型,是根据要解决的问题(目标)确定的。
当然可以选择两个或以上的模型对比,并适当调整参数,使模型效果不断优化。
四、模型评估
模型效果的评估有两个方面:一是模型是否解决了需要解决的问题(是否还有没有注意和考虑到的潜在问题需要解决);二是模型的准确性(误差率或者残差是否符合正态分布等)。
如:在识别KOL假粉的问题中,需要评估的是:模型能否识别出假粉?识别的误差率是多少?粉丝识别误差率=(假粉误认为真粉的数量+真粉误认为假粉的数量)/总粉丝数
(作者: 来源:)