测振传感器的分类
测振传感器也称拾振器,测振传感器也称拾振器。感受物体振动并将其转换成电信号的一种传感元件。由于分类原则不同,测振传感器的分类方法很多。
机械振动测试方法一般有机械法、光学法和电测法。机械法常用于振动频率低、土壤墒情测定仪振幅大、精度不高的场合。光学法主要用于精密测量和振动传感器的标定。电测法应用范围广。每种测振方法要采用相应土壤养分速测
本安振动分析仪生产商
测振传感器的分类
测振传感器也称拾振器,测振传感器也称拾振器。感受物体振动并将其转换成电信号的一种传感元件。由于分类原则不同,测振传感器的分类方法很多。
机械振动测试方法一般有机械法、光学法和电测法。机械法常用于振动频率低、土壤墒情测定仪振幅大、精度不高的场合。光学法主要用于精密测量和振动传感器的标定。电测法应用范围广。每种测振方法要采用相应土壤养分速测仪的传感器。
相对式传感器是以空间某一固作为参考点,相对式传感器是以空间某一固作为参考点。测量物体上的某点对参考点的相对位移或速度。绝1对式传感器是以大地为参考基准,即以惯性空间为基准,测量振动物体相对于大地的绝1对振动,双称惯性传感器。
利用振动信号对故障进行诊断,是设备故障诊断方法中有效、常用的方法,机械设备和结构系统在运行过程中的振动及其特征是反映系统状态及其变化规律的主要信号,通过各种动态测试仪器拾取、记录和分析动态信号,是进行系统状态监测和故障诊断的主要途径.
统计资料表明,由于振动而引起的设备故障,在各类故障中占60%以上,据国内外报道,用振动的方法可以发现使用中的航空发动机故障的34%,可节约维修费用70%.
利用振动检测和分析技术进行故障诊断的信息类型多,量值变化范围大,而且是多维的,便于进行识别和决策,例如频率范围可以从0.01赫到几万赫,加速度可以从0.01g到成百上千个g,这就为诊断不同类型的故障提供了基础.
旋转机械的振动监测与故障诊断在电厂中有着重要的实际应用价值,根据对机械振动信号的测量与分析,可以提前发现故障,及时处理,消灭故障于萌芽之中,避免事故扩大使设备损坏酿成不可挽回的巨大损失。
振动频谱分析仪中的极坐标图的含义 极坐标图是把振幅和相位随转速变化的关系用极坐标的形式表示出来。图中用一旋转矢量的点代表转子的轴心,该点在各个转速下所处位置的极半径就代表了轴的径向振幅,该点在极坐标上的角度就是此时振动的相位角。这种极坐标表示方法在作用上与波德图相同,但它比波德图更为直观。
早期绝大多数人习惯于利用反向推理来诊断设备故障,除之前我们发布的原因之外,还有一个重要的原因,就是习惯于早期的振动故障分类方法。殊不知,早期许多误诊断和漏诊断的根源是由于传统的故障分类方法不当。因为这种分类方法中故障和特征存在严重的交叉,当对故障特征和机理了解不够深入时,作出误诊断和漏诊断确实是在所难免的。但这个对于故障诊断至关重要的问题,却一直没有引起关注,出现误诊断及难以说清的一些振动现象时,往往怪罪于设备振动太复杂,实际是早期振动故障分类方法,给大多数相关人员认识振动故障在思想上造成了混乱。
(作者: 来源:)