叶片是航空发动机的主要零件之一,其结构强度直接影响到发动机的工作效率和运行可靠性。为生产线自动化检测控制、工业智能制造领域提供非接触传感器和测量仪器。叶片的工作环境比较恶劣,除了承受高速旋转的气动力、离心力和振动负荷外,还要受到热应力的作用,很容易发生故障。以航空发动机为例,据统计振动故障率占发动机中总故障率的60%以上,而叶片振动故障率又占振动故障率的70%以上。因此,
叶片振动测量系统
叶片是航空发动机的主要零件之一,其结构强度直接影响到发动机的工作效率和运行可靠性。为生产线自动化检测控制、工业智能制造领域提供非接触传感器和测量仪器。叶片的工作环境比较恶劣,除了承受高速旋转的气动力、离心力和振动负荷外,还要受到热应力的作用,很容易发生故障。以航空发动机为例,据统计振动故障率占发动机中总故障率的60%以上,而叶片振动故障率又占振动故障率的70%以上。因此,有必要在叶片的设计过程中建立合适的有限元模型并进行振动固有特性分析和响应分析。本文针对叶片固有特性和振动响应的分析方法进行研究。首先对叶片固有特性分析方法和振动响应分析方法进行了综合性评述。
在具有许多涡轮叶片的涡轮机中,对于布置成排的大量涡轮叶片的振动进行监测的一种系统,它包括:di一静止传感器(16),它感知一个旋转涡轮叶片(12)时产生出di一输入信号,其特征在于:有一个第二传感器(18),其位置校准到能感知上述的同一 涡轮叶片,产生出第二输出信号,这di一和第二传感器安装得实际上同时感知同一个涡轮叶片;用以对上述di一和第二信号(V↓〔In1〕、V↓〔In2〕)进行比较的装置(28),以检测出涡轮叶片的轴向位置;对上述比较装置起响应的输出装置。、A、型是危险的,一般情况下,都必须调开共振,只有当叶片的蒸汽弯应力较小时才允许在共振下运行。
叶片振动参数的测量方法取决于振动的类型。
对异步共振由于叶片的振动频率不是旋转速度的整数倍,因此对同一个叶片在每一转中的振幅均不一样,只需要1至2个传感器即可测出叶片的振幅序列,再通过FFT变换求出频率。BVMS可用于旋转叶片同步、异步振动监测,也可用于FOD、HCF、LCF、叶片裂纹、转子喘振颤振等转子监测和故障分析。另外由于非接触式叶片振动测量中振动信号的采集是采用的跳跃采样方式,得到的是一组非等距的离散信号,常规的信号处理方法无法使用,为此还可用修改后的Prony谱估计方法得到信号的幅频和相位信息。
(作者: 来源:)