相比MoO3,加入钼质量浓度相同的Na2MoO4所得膜层耐蚀性更佳,在添加0.42g/L Na2MoO4时制得膜层其腐蚀电流密度比无添加剂时的低约7倍,比基体的低约1个数量级。故加入Na2MoO4的价比更高。
此外,这2种添加剂的加入,均可在AZ91D镁合金表面制得浅棕色的膜层,起显色作用的物质是MoO2。
采用微弧氧化技术对2A12、3A21两种铝合
PEO技术微弧氧化
相比MoO3,加入钼质量浓度相同的Na2MoO4所得膜层耐蚀性更佳,在添加0.42g/L Na2MoO4时制得膜层其腐蚀电流密度比无添加剂时的低约7倍,比基体的低约1个数量级。故加入Na2MoO4的价比更高。
此外,这2种添加剂的加入,均可在AZ91D镁合金表面制得浅棕色的膜层,起显色作用的物质是MoO2。
采用微弧氧化技术对2A12、3A21两种铝合金基材加工的零件进行处理,并在模拟海洋大气环境的条件下,依据GJB150.11A-2009的要求对处理后的零件进行盐雾试验,研究铝合金微弧氧化膜层的腐蚀行为。结果表明,2A12铝合金经微弧氧化处理得到的黑色膜层光泽度低,具有良好的消光作用,微弧氧化膜层经酸性盐雾试验96 h后,出现不同程度的腐蚀脱落。
微弧氧化如何动电位极化曲线检测?
采用电化学工作站的三电极体系进行测试,测试前为了保证良好的导电性需将试样一面的陶瓷膜层打磨掉,然后浸泡于质量分数为5%的NaCl水溶液中进行测试。动电位范围设置为-0.2V~+0.4V(相对于开路电位),扫描速度为1mV/s。采用EchemAnalyst 软件对极化曲线进行Tafel 拟合得到电化学参数。
微弧氧化的步骤
一、阳极氧化阶段
将样品置于一定的电解液中,通电后,样品外表和阴极外表呈现无数细小的平均的白色气泡,而且随电压升高,气泡逐步变大变密,生成速率也不时加快。在到达击穿电压之前,这种现象不断存在,这一阶段就是阳极氧化阶段。
二、火花放电阶段
当施加到样品的电压到达击穿电压时,样品外表开端呈现无数细小、亮度较低的火花点。这些火花点密度不高,无爆鸣声。在该阶段,样品外表开端构成陶瓷层,但陶瓷层的生长速率很小,硬度和致密度较低,所以应尽量减少这一阶段的时间。
(作者: 来源:)