网带式干渣机由意大利MAGALDI(马加尔迪)公司在1987年研制(MAC干排渣系统) ,并首先在意大利本国应用,于90年代初被国际市场认可,机组容量到700MW。MAC干排渣系统采用密闭网带式输送机,在炉渣输送过程中依靠炉膛负压自壳体头部及两侧吸入自然风对其冷却,冷却后热风全部进入炉膛。国内于1999年在三河电厂引进该公司设备并运行。链轮采用铁基合金材质,有石墨润滑作用,不损伤环链,强度
干式捞渣机
网带式干渣机由意大利MAGALDI(马加尔迪)公司在1987年研制(MAC干排渣系统) ,并首先在意大利本国应用,于90年代初被国际市场认可,机组容量到700MW。MAC干排渣系统采用密闭网带式输送机,在炉渣输送过程中依靠炉膛负压自壳体头部及两侧吸入自然风对其冷却,冷却后热风全部进入炉膛。国内于1999年在三河电厂引进该公司设备并运行。链轮采用铁基合金材质,有石墨润滑作用,不损伤环链,强度和寿命皆优于欧美日的合金钢链轮。
我国于2002年开始自主研发网带式干渣机(如图1),并针对我国国情和使用的问题对干渣机和整个干渣系统做了许多:网带结构、清扫连接方式、上下添加大渣挤压等技术,使得网带式干渣机日趋完善。我国网带式干渣机技术已经超越MAC,不但在国内得到大量应用,也被广泛应用到世界各地,尤其是东南亚。目前装机容量可满足1000MW机组。液力偶合器能避免自控排障失效时电机过载烧毁,实现多重保护,确保万无一失。图1 网带式干渣机
此类干渣机主要由驱动系统、输送/清扫系统、液压张紧系统、输送托辊、进风系统、壳体等组成。其中输送系统采用不锈钢网带传动(如图2)网带干渣机主要部件 ,上面固定承载鳞板(如图3),用于输送和冷却高温灰渣。清扫系统采用双圆环链链条传动,拖动刮板清扫飞落堆积壳体底部的灰渣。工作时,液压油缸将输送链张紧,由动力装置带动驱动辊筒转动,通过驱动辊筒和输送链之间由张紧力而产生的摩擦力,来带动输送链的运行,从而实现灰渣的收集和运输,落在下部的细灰由清扫链刮板来完成收集和输送。并在设备壳体和头部设置进风口,用于吸入环境空气对内部高温灰渣进行冷却。
不锈钢网带的抗拉强度:1400mm网带为532kN,1600mm网带608kN,年拉伸率(包括拉长和磨损)约1~2%。清扫链条通常采用φ18×64高链条,也有小机组采用φ14×50规格。
优缺点分析:输送网带以靠驱动辊摩擦力驱动,传动平稳,磨损小,但过载易打滑,底部设置清扫系统可设备底部灰渣,但增加了一套系统,多了一个事故点,增加了功耗,不适合大倾角输送;网带上鳞板节距约70mm,透风间隙多,冷却效果好,但漏灰多,清扫系统负载大磨损大;钢带承载输送程采用简支轴支托,受力合理。输送钢带的网带和鳞板均采用耐热不锈钢制作,耐温性能好,但导热率低,且不锈钢成本高。V型半敞开式结构,适用于进口法兰连接而出口不需法兰连接的炉下碎渣。
改造清扫链
在改造清扫链提升角度时,可以将其角度从之前的35°,降低至17°,以此来减轻托辊磨损,减少压辊,获得更好的清扫链出力;另外,还需要将清扫链所对应的出口,准确连接于给料机;主要技术指标达到了国内外同类产品的水平,该产品代表了国内目前的设计和制造水平。而在具体的钢带出口上,仍然是碎渣机,使其处于独立工作状态,彼此不造成干扰,这样能够消除堆渣对整个清扫链所造成的威胁;还需强调的是,需定期性的检查压辊,清扫链托辊,如果出现严重磨损,需即刻更换。
3.1.7 斜段的箱体支腿用螺栓与平台斜梁紧固;在弯段的底部加辅助支撑;平段、尾部的箱体支腿与基础与预埋铁焊接,焊脚高度 8mm。
3.2 头部输送链驱动辊筒
3.2.1 驱动辊筒对称中心线与排渣机纵向中心线重合度偏差 ≤3mm。
3.2.2 驱动辊筒轴线的水平度偏差 ≤0.2/1000。
3.2.3 驱动辊筒轴线与干渣机纵向中心线的垂直度偏差 ≤2mm。
3.2.4 驱动滚筒轴线与张紧滚筒轴线平行度 ≤5mm。
3.3 头部清扫链驱动链轮
3.3.1 驱动清扫链轮轴横向中心线与干渣机纵向中心线重合度偏差≤2mm。
3.3.2 驱动清扫链轴的水平偏差 ≤ 1/1000。
3.3.3 驱动清扫链轮轴与干渣机纵向中心线垂直度偏差 ≤2mm。
3.3.4 驱动清扫链轴与尾部张紧链轮轴的平行度 ≤5mm。
3.4 尾部输送链张紧辊筒
3.4.1 输送链张紧辊筒轴线的水平偏差 ≤0.2/1000。
3.4.2 张紧辊筒横向中心线与排渣机纵向中心线重合度偏差 ≤3mm。
3.4.3 张紧辊筒轴线与排渣机中心线垂直度偏差 ≤2mm。
3.4.4 张紧辊筒与头部驱动辊筒轴线的平行度 ≤5mm。
3.5 尾部张紧清扫链轮轴
3.5.1 张紧清扫链轮轴的横向中心线与排渣机纵向中心线的重合度偏差 ≤2 mm。
3.5.2 张紧清扫链轮轴的水平偏差 ≤1/1000。
3.5.3 张紧清扫链轮轴线与排渣机纵向中心线垂直度偏差 ≤2 mm。
3.5.4 张紧清扫链轮轴与驱动清扫链轮轴的平行度 ≤5 mm。
3.6 尾部张紧辊筒与张紧清扫链轮的张紧油缸
4.1 试车
4.2.1 启动液压油泵,调整油压,设定输送链油压为4.5 MPa(限压为7.5 MPa),设定清扫链油压为 2 MPa(限压为3 MPa)。
4.2.2 切换输送链换向阀,对输送链进行张紧。
4.2.3 切换清扫链换向阀,对清扫链进行张紧。
4.2.4 启动输送链电机,设定频率为 5 Hz。
4.2.5 启动清扫链电机。
4.2.6 观察输送链、清扫链的运行情况(在弯段处,输送链与压轮、托辊有可能不接触,造成压轮、托辊不转动)。
4.2.7 设备运行一小时后停机,检查设备各处的密封、连接及渗漏情况。
4.3 空负荷试运行
4.3.1 空负荷运行8 小时(20Hz)。
4.3.2 记录张紧辊筒、张紧链轴的位移量,电机的功率、电流、电压、温升,辊筒及链轴的转速,轴承座的温升等。
4.3.3 观察输送链、清扫链的运行情况,并对箱体作检查。
将运转情况记录于表 4.3-1
4.4 空负荷调速试验(5~40Hz)
(作者: 来源:)