微波这段电磁频谱具有不同于其他波段的如下重要特点:选择性加热,物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳
手机阵列天线测试公司
微波这段电磁频谱具有不同于其他波段的如下重要特点:选择性加热,物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量的多少对微波加热效果影响很大。
微波与其他学科互相渗透而形成若干重要的边缘学科,其中如微波天文学、微波气象学、微波波谱学、电动力学、微波半导体电子学、微波超导电子学等,已经比较成熟。微波光学的研究和应用已经成为一个活跃的领域。微波光学的发展,特别是70年代以来光纤技术的发展,具有技术变革的意义(见微波和射频波谱学)。常用的无线传输介质是微波、激光和红外线,通信介质也称为传输介质,用于连接计算机网络中的网络设备,传输介质一般可分为有线传输介质和无线传输介质!
射频同轴连接器的命名由主称代号和结构代号两部分组成,中间用短横线"-"隔开。主称代号射频连接器的主称代号采用国际上通用的主称代号,具体产品的不同结构形式的命名由详细规范作出具体规定,结构形式代表射频连接器的结构。转接器的型号以插头或插座的型号为基础派生组成,一般采用下列形式:转接器型号的主称代号部分以连接器主称代号(系列内转接器)或分数型式(系列间转接器)标示。
射频连接器主要规格;阻抗:几乎所有的射频连接器和电缆被标准化为50Ω的阻抗。例外普遍是75Ω系统通常用于有线电视安装。它也是重要的射频同轴电缆连接器具有相匹配的电缆的特性阻抗。如果不是这样,一个不连续性被引入和损失可能导致。VSWR(电压驻波比):在理想情况下应该是团结,良好的设计和实施能保持VSWR1.2在感兴趣的范围内。频率范围:现在大多数射频工作是在1至10GHz的范围,因此,连接器必须在这个区域的低损失。对于10 GHz以上的情况下 - 有很多工作,现在在10至40 GHz范围内的事情的 - 有其中选择较新的连接器。他们是昂贵的,因为是电缆本身。
(作者: 来源:)