发烧线材在音响系统中的应用一般来讲,在N值相等时股数越多,线的传导能力越强,线阻(阻抗)越低,传导速度越快。除了音箱线外,N值也用来衡量同轴信号线等某些其它线材。发烧线材(包括信号线/喇叭线)对音色有一定程度的影响,发烧友早已明白。发烧线材在音响系统中所扮演的只是锦上添花的角色,若想要音响系统的音色有较大辐度的改进,还是应该采用其他更积极的方法。发烧线材绝大多数来自欧洲、美国、日本
天津调音台价格
发烧线材在音响系统中的应用
一般来讲,在N值相等时股数越多,线的传导能力越强,线阻(阻抗)越低,传导速度越快。除了音箱线外,N值也用来衡量同轴信号线等某些其它线材。发烧线材(包括信号线/喇叭线)对音色有一定程度的影响,发烧友早已明白。发烧线材在音响系统中所扮演的只是锦上添花的角色,若想要音响系统的音色有较大辐度的改进,还是应该采用其他更积极的方法。发烧线材绝大多数来自欧洲、美国、日本等和地区,来自不同国度的发烧线材其表现也各具特色。日本的线材,大多极为重视导体的纯度绝缘材料的光洁度,以及导线的线径、总股数,不讲究线材结构,强调以高纯度的导体材料来改进传输效果,其音色表现也比较中性;日本的(audio technical)、古河(FURUTECH PCOCC)、登高(DENKO)Audio NOTE。美国的发烧线以威猛粗壮著称,产地精良,制作工艺考究,其表现大多动态凌厉、频响宽广,声音清晰爽快、质感明朗;美国的超时空(TARALABS)、怪兽线圣(A.Q.audio quest)欧洲的发烧线材制作工艺精湛,对线材的编织、屏蔽、避震等方面比较考究,具有较好的音乐表现力与平衡度,外观朴实无华,适合表现古典音乐,并且利用特殊的编织技术来消除集肤效应引起的高、低频失真,使音色自然逼真,音乐表现力更佳。荷兰的(VDH)范登豪、丹麦的高度风(ORTOFON)、意大利的A.R.T。一般来说,欧美的发烧线材大多具有调校音色的效果。那么,没有声音可能是声卡的驱动程序错误或声音故障,也可能是被静音了或音量过小。由于聆听者的听者品味、扬声器与放大器的先天个性,都会影响听到的声音。要用适当的导线去调校出各方面平衡的声音,首先必须找出发烧友自己那套音响系统的个性,然后采用个性相反的导线去令声音更平衡,而非一面倒的倾向某方面,例如声音太浓厚速度偏慢的组合便应用清爽结像线条清晰的接线。

如何减少电源变压器对音响功放电路的干扰
当变压器初级阻抗等于源电阻同负载的反射电阻的并联值时,将出现低频截止,增大源于变压器的噪声,所以电源变压器也必须有足够的电感。但这并不能成为盲目加大变压器输出功率的理由。因为,变压器初级电感是随铁芯磁通密度而变化的,次级负载功率小时,铁芯磁通密度也会减小,使电感下降。一般,电源变压器的功率可在次级供电功率的1.4—2倍之间选择,比较适当。
变压器的铁芯导磁率很高,磁致伸缩效应也很高,对外界磁场、压力、振动的影响敏感,能够因此而产生附加电压,造成干扰。音响使用不当时有多种情况会造成有杂音,比如信号受到干扰、接口或者连接线接触不良、音响本身质量较差等等。为此,在装配或安装变压器时。

前级音量控制器对音响系统的影响
前级音量控制器对音响系统的影响
在音响系统中,音量调节器的信噪比如果不够高,播放效果将受到明显地损害。普通电位器由于电阻膜片空间面积较大,很容易产生感应噪声。当把电位器旋到两端时,电位器产生的感应噪声较小。当把电位器旋到中间常用位置上时,电位器产生的感应噪声。实验证明,使用普通电位器做音量调节,在把电位器屏蔽起来,直接把信号源输出的音频信号加到电位器上时,整机信噪比仅能够达到60db。想要降低电位器产生的感应噪声,只能使用低噪声放大电路将信号源输出的音频信号先放大十几倍,再将它加到电位器上。这样做的难点是,前置低噪声放大电路必需使用高达±40V的工作电压才能在不发生信号被削波的情况下提高整机信噪比。发烧线材在音响系统中所扮演的只是锦上添花的角色,若想要音响系统的音色有较大辐度的改进,还是应该采用其他更积极的方法。由于加在电位器上的音频信号幅度被放大了10倍,在电位器上产生的热损耗也将增大100倍,必须改用由若干个金属膜电阻串联构成的非连续调节的电位器来调节音量。这种音量电位器产生的热噪声比普通电位器产生的热噪声要低得多,但信噪比也仅能达到85db,很难超过90db。

功放与音箱的匹配方案在人耳听域的20Hz~20kHz内
功放与音箱的匹配方案
在人耳听域的20Hz~20kHz内,真正集中大量能量的音乐信号一般在中、低频段,而高频段能量仅相当于中、低频段能量的1/10。所以,一般音箱高音损失的功率比低音喇叭低得多,以求高低音平衡;而功放好比一个电流调制器,它在输入音频信号的控制下,输出大小不同的电流给音箱,使之发生大小不同的声音,在一定阻抗条件下,要想让标称功率为200W的功放达到400W或几倍的输出其实很容易,只是功放的失真(THD)将会大大地增加,这种失真主要产生在中、低频信号中的高频谐波,其失真越大,高频谐波能量就越大,而这些高频失真信号都将随高频音乐信号一同进入高音头,这就是为什么小功率功放推大音箱会发生烧高音头的原因。
据悉,功放与音箱功率配置的具体标准应该是:在一定阻抗条件下,功放功率应大于音箱功率,但不能太大。在一般应用场所功放的不失真率应是音箱额定功率的1.2-1.5倍左右;而在大动态场合则应该是1.5-2倍左右。参照这个标准进行配置,既能保证功放在状态下工作,又能保证音箱的安全,即使对经验不足的操作人员,只要不是操作严重失误或前级周边设备调校不当,就能让音箱和功放工作在稳定状态。PCOCC线材具备了信号传输上的重要特性,它在传输方向上达到了杂质的影响,或无颗界限,具有平滑的表面和特性的柔顺性,因而可以传送极为清晰的信号。

(作者: 来源:)