背压法氦质谱检漏
采用背压法检漏时,首先将被检产品置于高压的氦气室中,浸泡数小时或数天,如果被检产品表面有漏孔,氦气便通过漏孔压入被检产品内部密封腔中,使内部密封腔中氦分压力上升。然后取出被检产品,将表面的残余氦气吹除后再将被检产品放入与检漏仪相连的真空容器内,被检产品内部密封腔内的氦气会通过漏孔泄漏到真空容器,再进入氦质谱检漏仪,从而实现被检产品总漏率测量。检漏仪给出的漏率值为测量漏率
真空箱式氦检漏系统
背压法氦质谱检漏
采用背压法检漏时,首先将被检产品置于高压的氦气室中,浸泡数小时或数天,如果被检产品表面有漏孔,氦气便通过漏孔压入被检产品内部密封腔中,使内部密封腔中氦分压力上升。然后取出被检产品,将表面的残余氦气吹除后再将被检产品放入与检漏仪相连的真空容器内,被检产品内部密封腔内的氦气会通过漏孔泄漏到真空容器,再进入氦质谱检漏仪,从而实现被检产品总漏率测量。检漏仪给出的漏率值为测量漏率,需要通过换算公式计算出被检产品的等效标准漏率。
背压法的优点是检测灵敏度高,能实现小型密封容器产品的泄漏检测,可以进行批量化检测。
背压法的缺点是不能进行大型密封容器的漏,否则由于密封腔体容积太大,导致加压时间太长。此外,每个测量漏率都对应两个等效标准漏率,在细检完成后还需要采用其它方法进行粗检,排除大漏的可能。
背压法的检漏主要应用于各种电子元器件产品检漏
真空设备制造过程中的检漏
在设备的加工阶段,有必要跟随加工工艺(尤其是焊接工艺)及时地对半成品零部件进行检漏。对于制造完毕后无法接触、检漏或修补的部件,焊缝质量要严格检漏,不合格的及时重焊、补焊并重新检漏,符合要求后才可以进行下一道工序。特别是对于大容器的组焊、加工,中间过程的检漏十分关键,必要时应该设计、制造专门的检漏工具(如探漏盒、盲板等)。对于采用双层室壁水冷夹套的真空室体,好首先组焊完内层室壁并检漏,确认没有漏孔后再组焊外层室壁。同样道理,对于室壁外侧有保温层等不易拆卸结构的情况,必须首先对室壁做严格检漏,然后才能包覆外层结构。
在条件允许情况下,所有真空法兰与其接管(包括真空室体法兰与室体壁)均应采用焊后加工法兰表面的工艺。不经焊后加工的法兰,即便在安装调试阶段可能满足了密封要求,但在设备使用过程中,受热、振动等因素也可能诱发焊接应力的释放,从而导致法兰变形和密封性能下降。
加工制造过程中,严格执行真空作业卫生和作业规范,对于提高真空设备和系统的气密性也是很有帮助的。焊接坡口打磨成型后,需经去油清洗并及时保护将有利于提高焊缝的气密性。已经加工完成的零部件动、静密封面,应该具有保护措施,严防在存放、搬运、装配过程中发生磕碰、划伤。使用焊接波纹管、金属与陶瓷或玻璃封接件、玻璃器件等易损件时,更应精心作业,尤其避免已经通过预检漏后被损坏而产生漏孔。
检漏技术的发展
检漏技术在真空领域占有非常重要的地位,它关系到真空设备的各项真空指标。如何地找到漏点,关系到企业的生产效率与经营成本。
检漏技术是一门不断发展、不断完善的技术,多年来,人们创造了很多检漏方法。
上世纪四十年代以前的技术非常简单,比如气泡法、电离计法等。当时,漏率高只能检测到10^-7Pa·m^3/s。
后来,经过不断的完善与提高,在1950~1960年代,研制者朝着提高灵敏度的方向努力,使灵敏度一度达到了10^-15Pa·m^3/s。
然而实践证明,单一追求高灵敏度并非合适,这会给检漏仪的生产制造带来一些麻烦。后来,人们将精力主要放在了仪器的稳定性、可靠性、小型化、简单化、检漏过程迅速化上面。
当今常见的氦质谱检漏仪,灵敏度在10^-9~10^-13Pa·m^3/s。较为的检漏仪压力在几万Pa就可检漏。便携式的检漏仪,一个人就可以搬运。甚至有些检漏仪已经可以通过手机APP远程控制检测。
这些技术上的进步,使检漏工作的效率和便利性得到很大提升,应用氦质谱检漏仪已经成为检漏技术中的主要方法。
(作者: 来源:)