激光增材制造围绕金属3D打印、激光表面修复、功能性部件展开研发和市场活动。激光淬火是加热、自激冷却,不需要炉膛保温和冷却液淬火,是一种无污染绿色环保热处理工艺,可以很容易实行对大型模具表面进行均匀淬火。通过技术团队研发和核心技术产业化,研发出具有自主知识产权的金属3D打印设备、激光熔覆设备以及功能性部件,突破国外核心技术的垄断,以持续研发及技术装备的升级应用,带动增材制造产业化发展,促进
激光切割机改造价格
激光增材制造围绕金属3D打印、激光表面修复、功能性部件展开研发和市场活动。激光淬火是加热、自激冷却,不需要炉膛保温和冷却液淬火,是一种无污染绿色环保热处理工艺,可以很容易实行对大型模具表面进行均匀淬火。通过技术团队研发和核心技术产业化,研发出具有自主知识产权的金属3D打印设备、激光熔覆设备以及功能性部件,突破国外核心技术的垄断,以持续研发及技术装备的升级应用,带动增材制造产业化发展,促进传统制造业向现代化智能装备制造业的转型。
激光切割的分类:1)汽化切割利用高能量密度的激光束加热工件。在短的时间内汽化,形成蒸气。在材料上形成切口。材料的汽化热一般很大,所以激光汽化切割时需要大的功率和功率密度。激光汽化切割多用于极薄金属材料和非金属材料(如纸、布、木材、塑料和橡皮等)的切割。2)熔化切割,激光熔化切割时,用激光加热使金属材料熔化,喷嘴喷吹非氧化性气体(Ar、He、N等),依靠气体的强大压力使液态金属排出,形成切口。所需能量只有汽化切割的1/10。激光器的选用要考虑以下几方面内容:1.激光器输出好的光束质量,电光转换率,光纤数值孔径,以及模式及模的稳定性。激光熔化切割主要用于一些不易氧化的材料或活性金属的切割,如不锈钢、钛、铝及其合金等。3)氧气切割,它是用激光作为预热热源,用氧气等活性气体作为切割气体。喷吹出的气体一方面与切割金属作用,发生氧化反应,放出大量的氧化热;另一方面把熔融的氧化物和熔化物从反应区吹出,而切割速度远远大于激光汽化切割和熔化切割。激光氧气切割主要用于碳钢、钛钢以及热处理钢等易氧化的金属材料。4)划片与控制断。激光划片是利用高能量密度的激光在脆性材料的表面进行扫描,使材料受热蒸发出一条小槽,然后施加一定的压力,脆性材料就会沿小槽处裂开。激光划片用的激光器一般为Q开关激光器和CO2激光器。控制断裂是利用激光刻槽时所产生的陡峭的温度分布,在脆性材料中产生局部热应力,使材料沿小槽断开。
激光淬火是利用激光将材料表面加热到相变点以上,随着材料自身冷却,奥氏体转变为马氏体,从而使材料表面硬化的淬火技术。
采用激光淬火齿面,其加热冷却速度很高,工艺周期短,不需要外部淬火介质.具有工件变形小,工作环境洁净,处理后不需要磨齿等精加工,且被处理齿轮尺寸不受热处理设备尺寸的限制等优点。但是对于不同的材料,由于自身的热物理性能及对激光的吸收率不同,表现出不同的激光切割适应性。激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、的淬火工艺
数控机床电主轴激光淬火技术应用
(1)主轴及随机附带4个试样,试样直径80mm,壁厚20mm,两端磨平。在采用CO2激光器进行激光硬化前,分别在主轴和试样表面上涂覆一层特别涂料,以增加对激光的吸收。
(2)用5kW的CO2横流式激光器对主轴及试样进行激光淬火,其输出功率P=1800~2000W,扫描速度v=5mm/s,机床转速n=30r/min,扫描宽度2~3.5mm。并采用微机控制淬火机床(工作台),配备灵活通用的工装夹具,固定淬火工件作平行移动、转动或合成运动。激光焊可以与MIG焊组成激光MIG复合焊,实现大熔深焊接,同时热输入量比MIG焊大为减小。
(3)激光淬火化后的主轴及试样检验 淬硬层深度0.5~1.2mm;表面淬火硬度60~66HRC;组织为外层极细马氏体+少量残留奥氏体,过渡层马氏体+铁素体+渗碳体,内层为原始组织,即回火索氏体。
(作者: 来源:)