在所有应用产业中,半导体产业对靶材溅射薄膜的要求是苛刻的。如今12英寸(300衄口)的硅晶片已制造出来.而互连线的宽度却在减小。硅片制造商对靶材的要求是大尺寸、高纯度、低偏析和细晶粒,这就要求所制造的靶材具有更好的微观结构。靶材的结晶粒子直径和均匀性已被认为是影响薄膜沉积率的关键因素。另外,薄膜的纯度与靶材的纯度关系极大,过99.995%(4N5)纯度的铜靶,或许能够满
纯钯靶材谁家好
在所有应用产业中,半导体产业对靶材溅射薄膜的要求是苛刻的。如今12英寸(300衄口)的硅晶片已制造出来.而互连线的宽度却在减小。硅片制造商对靶材的要求是大尺寸、高纯度、低偏析和细晶粒,这就要求所制造的靶材具有更好的微观结构。靶材的结晶粒子直径和均匀性已被认为是影响薄膜沉积率的关键因素。另外,薄膜的纯度与靶材的纯度关系极大,过99.995%(4N5)纯度的铜靶,或许能够满足半导体厂商0.35pm工艺的需求,但是却无法满足如今0.25um的工艺要求。由于W-Ti系列薄膜具有非常优良的性能,近几年来应用量急剧增加,2008年W-Ti靶材世界用量已达到400t,随着光伏产业的发展,这种靶材的需求量会越来越大。

任何金属都不能达到纯。“超纯”具有相对的含义,是指技术上达到的标准。
由于技术的发展,也常使 “超纯”的标准升级。“超纯”的相对名词是指“杂质”,广义的杂质是指化学杂质(元素)及“物理杂质”(晶体缺陷),后者是指位错及空位等,而化学杂质是指基体以外的原子以代位或填隙等形式掺入。

但只当金属纯度达到很高的标准时(如纯度9以上的金属),物理杂质的概念才是有意义的,因此目前工业生产的金属仍是以化学杂质的含量作为标准,即以金属中杂质总含量为百万分之几表示。
超纯金属的检测方法极为困难。痕量元素的化学分析系指一克样品中含有微克级(10克/克)、毫微克级(10克/克)、微微克级(10克/克)杂质的确定。常用的手段有中子和带电粒子活化分析,原子吸收光谱分析,荧光分光光度分析,质谱分析,化学光谱分析及气体分析等。在单晶体高纯材料中,晶体缺陷对材料性能起显著影响,称为物理杂质,主要依靠在晶体生长过程中控制单晶平稳均匀的生长来减少晶体缺陷。下面我们将分别介绍靶材的主要应用领域,以及这些领域靶材发展的趋势。

各种纯度铝中的杂质含量及剩余电阻率如表2所示。超纯金属超纯的纯度也可以用剩余电阻率来测定,其值约为2×10-5。现代科学技术的发展趋势是对金属纯度要求越来越高。因为金属未能达到一定纯度的情况下,金属特性往往为杂质所掩盖。不仅是半导体材料,其他金属也有同样的情况,由于杂质存在影响金属的性能。而且所需要的氧化物原料也不一定是纳米颗粒,这样可以简化前期的工序。

钨过去用作灯泡的灯丝,由于脆性而使处理上有困难,在适当提纯之后,这种缺点即可以克服(钨丝也有掺杂及加工问题)。
(作者: 来源:)