处理措施就是联轴器的重新找正,确保同心度在偏差允许值内。联轴器对中找正应注意的是:一是,应以布袋除尘风机的联轴器为基准,测定和调整布袋除尘风机电机来保证电机与风机两轴线同轴;将修正前后数值计算模型预测原型机性能结果与试验值作对比分析,由数据可知,采用标准k-ε模型预测的风机性能曲线较试验值存在一定误差,其较大误差值达9。二是,电机的四个地脚螺栓必须对角均匀紧固
布袋除尘风机
处理措施就是联轴器的重新找正,确保同心度在偏差允许值内。联轴器对中找正应注意的是:一是,应以布袋除尘风机的联轴器为基准,测定和调整布袋除尘风机电机来保证电机与风机两轴线同轴;将修正前后数值计算模型预测原型机性能结果与试验值作对比分析,由数据可知,采用标准k-ε模型预测的风机性能曲线较试验值存在一定误差,其较大误差值达9。二是,电机的四个地脚螺栓必须对角均匀紧固后才能读数;三是,盘动联轴器时转向应与风机运转方向一致。调整的顺序应是;首先,使两联轴器轴线平行,即先保证轴向百分表的四个读数相差值符合本文表1 的允许值;其次,使两联轴器轴线同高,即先调整左右径向偏差,后调整上下高差,直至符合本文的允许值。在实际工作中,常用的打表工具———磁性表座虽然使用简便,但却存在着刚性不足和适用条件受限的不良情况。
对于重要和安装要求高的风机,有必要设计和制作一个表架配合百分表进行测量,布袋除尘风机主要由抱箍、角钢表架等组成。,主要是U102 除尘风机振动偏大需重新校正联轴器对中。现场检修人员反映,在打表过程中,径向百分表下方读数不时出现异常情况:电机垫高已经很明显,但读数却不变或变小(当时百分表探头打在风机端半联轴器上,此情况下,如电机垫高,径向百分表在下方读数应增大)。5)与实验测试结果对比分析,结果表明采用数值模拟研究风机性能是可行的。异常读数的出现,严重干扰了检修正常进行。凭多年经验并仔细观察后发现,当联轴器转到下方时,百分表探头已脱离半联器近0.5 mm,即此时百分表探头已不起作用,百分表出现假读数。
叶片形状优化对布袋除尘风机金属叶轮稳定运行的影响
叶片的结构优化对离心风机金属叶轮平稳运行有着重要的影响。目前很多学者研究了叶片出口安装角的结构优化以及叶片高度的结构优化,但是对于叶片形状的结构优化研究得较少。气流在叶片的不同区域的流动有很大的不同。在叶轮前盘,气流的流动方式主要是轴向流动。在叶轮的中后盘,气流的流动方式主要是径向流动。使用三维粒子动态分析仪(3D-PDA)对大型风机进气箱内部三维气体流场进行测量,揭示了其内部流动的基本特征,为了解进气箱流场结构和流动机理提供了依据。通过这种方式,达到叶轮前盘向中后盘送风,使叶轮中后盘出风的目的。由此可见,通过对叶片形状进行优化设计,可以在一定程度上增加叶片的送风量以及有效通道的宽度,使得离心风机的效率得到提高,从而保证金属叶轮的平稳运行。
布袋除尘风机具有体积小、压力系数高等一系列优点,在工业、农业等各个领域都得到广泛应用,是人们生产生活中必不可少的一种机器设备。离心风机主要由集流器、蜗壳、电机以及叶片四个部件组成。各部件的结构优化对离心风机金属叶轮稳定运行起着重要的作用。蜗壳优化对布袋除尘风机金属叶轮稳定运行的影响蜗壳是离心风机金属叶轮的重要组成部分。随着科学技术的发展以及生活水平的提高,对布袋除尘风机进行结构优化越来越受到人们的关注。因此本文通过对集流器优化、蜗壳优化、电机优化以及叶片形状进行优化,来观察结构优化之后的离心风机对金属叶轮稳定运行的影响,以促进离心风机的生产工作朝着更完善、更健康的方向发展。
整机压力云图分布
通过Fluent 软件对掘进工作面离心风机进行流场数值模拟,模拟得出在同流量下,加米字集流器和普通集流器离心风机压力云图可以看出,风机静压从进口至出口逐渐增大,在蜗壳外达到较大。加米字集流器风机进口静压明显高于普通集流器离心风机, 其较大静压达到2 510 Pa,普通集流器达到1 440 Pa;加米字风机的全压较大可达5 860 Pa,而普通集流器较大达到4 260 Pa。蜗壳入口气流由于受到蜗壳流动不对称的影响,导致分布不均的现象发生。
布袋除尘风机集流器的压力用Tecplot 软件对模拟结果进行后处理,可以对离心风机集流器的受压进行对比分析。加米字形集流器和普通圆弧形集流器内部流场受压分布所示, 布袋除尘风机米字形集流器入口压力为-8 000 Pa,到集流器出口达到-18 000 Pa,压差10 000 Pa;普通圆弧形集流器入口压力为-8 000 Pa,到集流器出口达到-16 000 Pa,压差8 000 Pa,小于米字形集流器。同时也可以看出,加米字形集流器压力梯度变化趋势比普通圆弧形集流器平缓,对稳定进口气流,保证气流的均匀及稳定有更明显的作用。同样由图6效率曲线对比图可知,加进气箱后风机整体效率降低,与原始布袋除尘风机相比其高效区域比较窄,缩短了工作区域,且加进气箱后较优工况点向小流量区偏移。
以布袋除尘风机蜗壳与叶轮出口在半径方向上的间距随方位角线性递增来优化蜗壳型线,并用试验证明了良好的蜗壳型线不仅能提高风机效率及全压,还能改变流量-压力曲线的变化趋势;5,集流器、叶轮、蜗壳等各流体区域结合处的公共面采用interface边界类型面,将叶片的压力面和吸力面以及叶轮前盘、后盘和转轴的内外表面一起定义为旋转壁面。BEENA等[11]通过应用层次分析法(AHP),对蜗壳的重要几何参数进行了优先排序,阐明了各参数对离心风机性能的影响;布袋除尘风机采用3种不同流量的五孔探头,测量了风机蜗壳内流体的三维流动,得出传统一维蜗壳型线设计方法忽略了风机内部严重的泄漏情况,应根据流体实际流动进行修正的结论。本文在传统蜗壳型线设计理论基础上,以某抽油烟机用多翼离心风机为研究对象,