企业视频展播,请点击播放视频作者:合肥宝发动力技术股份有限公司
DPF 结构设计的主要目标: (1) 通过增大入口孔的过滤体积,增加 DPF 的储灰能力,同时减少高碳烟负载时的背压;(2) 通过优化 DPF 的孔隙率和平均孔直径分布,适应不同催化剂涂敷量的要求(in-wall coating),保持低的压差损失;(3)通过在壁面上涂敷一层薄薄催化剂(on-wall coating)
dpf颗粒捕捉器价格
企业视频展播,请点击播放
视频作者:合肥宝发动力技术股份有限公司
DPF 结构设计的主要目标: (1) 通过增大入口孔的过滤体积,增加 DPF 的储灰能力,同时减少高碳烟负载时的背压;(2) 通过优化 DPF 的孔隙率和平均孔直径分布,适应不同催化剂涂敷量的要求(in-wall coating),保持低的压差损失;(3)通过在壁面上涂敷一层薄薄催化剂(on-wall coating)的设计,可以提高 DPF 的初始 PM 过滤效率,以及再生效率,消除深层过滤。所谓“in-wall coating”涂敷技术就是把含有催化剂的浆料均匀地 分布在 DPF 过滤壁内孔晶粒表面,达到增加碳烟 与催化剂接触面积的效果;而“on-wall coating” 技术就是在 DPF 入口过滤壁表面上涂敷一层很薄 的含催化剂的浆料,消除 DPF 壁深层过滤。

重结晶碳化硅由于在高温下烧结几乎不收缩,孔的形成主要取决于具有双峰粒径分布的碳化硅粉的结合,因此能形成分布比较均匀的微孔分布。然而采用复合碳化硅、堇青石和钛酸铝这 3 种材料的 DPF,由于使用了造孔剂,在烧成过程中,收缩率比较大,因而孔的平均直径分布比较宽。图展示了这4 种材料 DPF 孔的平均直径的分布范围。
值得注意的是,柴油和 B20 这 2 类燃料的颗 粒数量分布曲线,在粒径 120nm 附近形成交叉. 在颗粒粒径大于 120nm 的区域,燃用 B20 燃料的 排气颗粒数量浓度明显小于纯柴油,这部分颗粒 通常为聚集态颗粒,生物柴油分子内氧有利于局 部过浓混合区域的扩散燃烧过程,并会促进已形 成碳烟颗粒的氧化过程,从而减少了以碳烟颗粒 为主体的聚集态颗粒数量.此外,生物柴油不含芳 香烃,也会降低碳烟颗粒前体物的形成,这些也会 导致聚集态颗粒数量的减少.而在颗粒粒径小于 120nm 时,柴油机燃用 B20 燃料的排气颗粒数量 浓度大于纯柴油,这是由于生物柴油粘度较高,燃 料较高的粘度影响缸内雾化混合及燃烧过程,导 致缸内未燃或者未完全燃烧的烃类燃料即未燃 碳氢增加,从而导致以可溶有机组分为主要成分 的核态颗粒数量上升,这部分颗粒粒径通常较小. 此外,聚集态颗粒数量减少后,其对挥发及半挥发 性可溶有机组分的吸附能力减弱,导致颗粒成核 作用增强,也会促使核态颗粒数量上升.

(作者: 来源:)