粉体粒度对3Y-TZP材料微观结构的影响:从两种材料的表面和断面的XRD图谱中可以看出,两种材料的原粉只有单一的t相氧化锆,无单斜(m)相氧化锆的衍射峰出现。而烧结后在表面(代表材料内部)只有微米粉烧结体出现了m相,纳米粉烧结体仍是全部由t相组成,这可能是微米粉烧结温度高,烧结后晶粒有异常长大,超过了相变临界晶粒尺寸,冷却时自发产生了少量
氧化物脉冲气流混合机直销
粉体粒度对3Y-TZP材料微观结构的影响:从两种材料的表面和断面的XRD图谱中可以看出,两种材料的原粉只有单一的t相氧化锆,无单斜(m)相氧化锆的衍射峰出现。而烧结后在表面(代表材料内部)只有微米粉烧结体出现了m相,纳米粉烧结体仍是全部由t相组成,这可能是微米粉烧结温度高,烧结后晶粒有异常长大,超过了相变临界晶粒尺寸,冷却时自发产生了少量相变;断面上两者均出现了m相氧化锆的衍射峰。混合仓也可作为正压相输送的输送罐,即混合物料可直接通过气力输送排出。
气流粉碎机的发展方向
信息技术、生物技术和新材料技术的发展对粉体产品的粒度、纯度和粒度分布提出了更高的要求,而且尽可能地节约能源、减少环境污染。为了满足社会生产的需要,超细粉碎技术面临着严峻的挑战。当颗粒受到的离心力大于向心力时,分级径以上的粗粒子被甩到筒体内壁,失速后沿筒内壁下落至二次风淘洗区。近几年在气流粉碎基础理论研究方面有了很大的进步。但是,很多方面还需要完善:
a.超音速粉碎流场的实验研究有必要加强。高粉碎速度给流场的直接测量带来了极大的困难,因此应加强测试仪器的研究;
b.目前将蒸汽作为工作介质的粉碎设备少,从而对以蒸汽在粉碎机的影响过程的研究很少,可充分利用蒸汽工作介质的优势,实现粉碎设备的大型化;
c.在气流粉碎参数优化模型的建立方面还很欠缺,从而给粉碎设备的完善和优化设计带来了困难;
d.深化混合、干燥、造粒、包覆等工艺与粉碎联合进行。软质材料的粉碎是粉碎技术的一大难题和研究重点。因此,为了满足现代工业的发展需要,加强基础理论研究,优化设备的设计迫在眉睫。
浅析超微粉碎技术在食品加工中的应用
超微粉碎技术是近20年来国际间发展起来的新技术。所谓超微粉碎,是指利用机械或流体动力的方法克服固体内部凝聚力使之破碎,从而将3毫米以上的物料颗粒粉碎至10-25微米,操作技术,是20世纪70年代以后,为适应现代高新技术的发展而产生的一种物料加工高新技术。超微细粉末是超微粉碎的终产品,具有一般颗粒所没有的特殊理化性质,如良好的溶解性、分散性、吸附性、化学反应活性等。8、设备结构紧凑,内外壁抛光,粉碎箱无存料,无死角,易清洗,符合GMP要求。因此超微细粉末已广泛应用于食品、化工、、化妆品、、染料、涂料、电子及航空航天等许多领域上。
超微粉碎方法:
磨介式粉碎:磨介式粉碎是借助与运动的研磨介质(磨介)所产生的中击以及非中击式的弯折、挤压和剪切等作用力,达到物料颗粒粉碎的过程。磨介式粉碎过程主要为研磨和摩擦,即挤压和剪切。其效果取决于磨介的大小、形状、配比、运动方式、物料的填充率、物料的粉碎力学特性等。气流磨在低温的应用在超音速气流下操作,气流磨粉碎室的内部会降低到零下数十度,在这样低温环境中,不需液氮冷却,就可以对热敏性物质和塑性材料实施超细加工,生产成本低,效益高。磨介式粉碎的典型设备有球磨机、搅拌磨和振动磨3种。
球磨机是用于超微粉碎的传统设备,产品粒度可达20-40微米。当要求产品粒度在20微米以下,则效率低、耗能大、加工时间长。搅拌磨是在球磨机的基础上发展起来,主要由研磨容器搅拌器、分散器、分离器和输料泵等组成。工作时在分散器高速旋转产生的离心力作用下,研磨介质和颗粒浆料;产生中击性的剪切、摩擦和挤压等作用,将颗粒粉碎。搅拌磨能达到产品颗粒的超微化和均匀化,成品的平均粒度可达到数微米。振动磨是利用磨介高频振动产生的;中击性剪切、摩擦和挤压等作用将颗粒粉碎的,所得到的成品平均粒度可达2-3微米以下而且粉碎效率比球磨机高得多,处理量是同容量球磨机的10倍以上。随后发送仓中的物料与压缩空气(或氮气)混合,经输送管道输送物料至位置。
(作者: 来源:)