变频器矩阵式控制的方法
控制定子磁链引入定子磁链观测器,实现无速度传感器方式;自动识别(ID)依靠准确的电机数学模型,对电机参数自动识别; 、算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。矩阵式交—交变频具有的转矩响应(<2m
丹佛斯变频器公司
变频器矩阵式控制的方法
控制定子磁链引入定子磁链观测器,实现无速度传感器方式;自动识别(ID)依靠准确的电机数学模型,对电机参数自动识别; 、算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。矩阵式交—交变频具有的转矩响应(<2ms),很高的速度准确(±2%,无PG反馈),高转矩准确(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。
变频器的秘密
我们所见的变频器绝大部分都是三相输出方式的,恐怕有不少同行会认为其内部应使用三只电流互感器检测每相的电流。可实际情况却是95%的变频器采用两相电流检测方式(当然所用互感器也就两只),至于剩余一相的电流值则是变频器利用运放电路由已测得两相电流计算得出。在维修或者拆卸通电后的变频器时,我们无需使用万用表检测直流母线电压,只需多加留意一下变频器内部线路中的电源指示灯就行。
抑制变频器高次谐波治理
1.对于变频器输出侧高次谐波治理,降低PWM控制的输出波形中所含有的交流谐波成分带来的磁杂讯技术已越来越多地在各种变频器中得到应用,如采用更高频率的开关元件、变频器输出端加装滤波装置,用随机法调节切换频率和闭环控制改善高次谐波。
2.对于变频器输入侧高次谐波治理,在变频器交流输入侧设置交流电抗器增大整流阻抗使整流重叠角增大,减小高次谐波。在电力回路中并联使用交流滤波装置,能将来自变频器的高次谐波分量与电源系统分流。对于装设多台变频器的场合,可各配专属的变压器,利用输入变压器相位错开的方法抑制高次谐波。
3.使用无源滤波器或有源滤波器,使用无源滤波器其主要是改变在特殊频率下电源的阻抗,适用于稳定、不改变的系统。而使用有源滤波器主要是用于补偿非线性负载。
(作者: 来源:)