将这种材料应用于电子设备中可吸收泄露的电磁辐射,能达到消除电磁干扰的目的。根据电磁波在介质中从低磁导向高磁导方向传播的规律,利用高磁导率铁氧体引导电磁波,通过共振,大量吸收电磁波的辐射能量,再通过耦合把电磁波的能量转变成热能。1.3 吸波材料在设计时,要考虑两个问题,1)、电磁波遭遇吸波材料表面时,尽可能完全穿过表面,减少反射;2)、在电磁波进入到吸波材料内部时,要使电磁波的能量尽
吸波屏蔽材料厂商
将这种材料应用于电子设备中可吸收泄露的电磁辐射,能达到消除电磁干扰的目的。根据电磁波在介质中从低磁导向高磁导方向传播的规律,利用高磁导率铁氧体引导电磁波,通过共振,大量吸收电磁波的辐射能量,再通过耦合把电磁波的能量转变成热能。1.3 吸波材料在设计时,要考虑两个问题,1)、电磁波遭遇吸波材料表面时,尽可能完全穿过表面,减少反射;2)、在电磁波进入到吸波材料内部时,要使电磁波的能量尽量损耗掉;

3)、磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,的纳米材料微波损耗机制是如今吸波材料分析的一大热点。2.2 按吸波材料的元素分类:1)、碳系吸波材料,如:石墨烯、石墨、炭黑、碳纤维、碳纳米管;2)、铁系吸波材料,如:铁氧体,磁性铁纳米材料 [1] ;3)、陶瓷系吸波材料,如:碳化硅 [2] ;4)、其他类型的材料,如:导电聚合物 [3] 、手性材料 [4] (左手材料)、等离子材料

3.1尖劈形微波暗室采用的吸收体常做成尖劈形(金子塔形状),主要由聚氨酯泡沫型、无纺布难燃型、硅酸盐板金属膜组装型等。随着频率的降低(波长增长),吸收体长度也大大增加,普通尖劈形吸收体有近似关系式L/λ≈1,所以在100MHz时,尖劈长度达3000mm,不但在工艺上难以实现,而且微波暗室有效可用空间也大为减少。尖劈形吸波材料3.2 单层平板形国外早研制成的吸收体就是单层平板形,后来制成的吸收体都是直接贴在金属屏蔽层上,其厚度薄、重量轻,但工作频率范围较窄。

(作者: 来源:)