氦质谱检漏仪的发展史必须追溯到上个世纪初。早在1918年期间,欧洲因和的需要就开始接触检漏,并开始对检漏手段的提升做了大量的基础研究工作,直到1941年,当时,科学家获知德国正在研制一种新型。这种的原理就是基于刚刚发现的铀的同位素的裂变现象。罗斯福认为必须抢先达到此目的,加之第二年的珍珠港事件加速诞生了“曼哈顿”计划。这个计划的两个目标之一就是研制(即)。为此,必须研制超高灵敏的检漏仪。其
真空包装检漏仪检漏仪
氦质谱检漏仪的发展史必须追溯到上个世纪初。早在1918年期间,欧洲因和的需要就开始接触检漏,并开始对检漏手段的提升做了大量的基础研究工作,直到1941年,当时,科学家获知德国正在研制一种新型。这种的原理就是基于刚刚发现的铀的同位素的裂变现象。罗斯福认为必须抢先达到此目的,加之第二年的珍珠港事件加速诞生了“曼哈顿”计划。这个计划的两个目标之一就是研制(即)。为此,必须研制超高灵敏的检漏仪。其原因还得从的浓缩谈起。
天然铀中含有铀238和两种同位素。能够发生裂变反应的同位素是,是的主要原料。可是天然铀中的含量仅0.7%。为此,科学家只能采用气体扩散法,从铀238中把含量甚微的分离出来。气体扩散法分离时铀238的原理是这样的:若有一个极其微小的孔隙, 部分气体分子通过这个微孔的速率取决于它们的分子量。分子量小的气体分子能够较快的通过这些微孔。如果让混合气体通过由多孔膜形成的长管,就可以成功地把两种气体分离。
铀是固态,而扩散分离需要的是气体。为此, 得把金属铀变成氮化物UF6,UF6在室温下就会蒸发。一个不利的因素是,在潮湿气氛中很容易生成腐蚀性很强的和铀的氧化物,铀的氧化物又是危险的材料。这两种情况在气体扩散分离法中应当防止。
在曼哈顿计划中, 的分离是把UF6通过几公里长的多孔管道的扩散后才获得的。
对整个扩散系统的密封性要求之高是的。潮湿空气不能进入工艺容器之中。雅可比博士在当时被誉为曼哈顿计划中的橡树岭扩散工厂的总设计师。为了成功的分离出,他对真空检漏技术提出的严格的要求有
(1)新的仪器对空气和残余气体的读数是零,仅对示踪气体有响应。
(2)新的仪器本身也是一个抽速较高的真空系统。
(3)仪表的指示能够反映出漏孔的大小, 漏量的大小。这三点要求实际上构成了研制新型检漏仪器的准则。在研制过程中, 对传统的检漏方法、光谱仪和皮喇尼规进行了考察。发现在实际运用中都存在着不少的缺点。当时,明尼苏达州州立大学的尼尔博士正在研制一种可以记录分子量和原子量大小的质谱仪。经过分析, 雅可比认为如果尼尔博士能够使仪器简化, 那么质谱仪将是一种好的选择性检漏装置。
单级磁偏转型氦质谱检漏仪
在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;放大静电计管和冷阴极电离规。
在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。并在加速电压作用下以一定的速度经过加速极S1的缝隙进入分析器。在均匀磁场的作用下,具有一定速度的离子将按圆形轨迹运动,其偏转半径可计算。
可见,当B和U为定值时,不同质荷比me-1的离子束的偏转半径R不同。仪器的B和R是固定的,调节加速电压U使氦离子束恰好通过出口缝隙S2,到达收集器D,形成离子流并由放大器放大。使其由输出表和音响指示反映出来;而不同于氦质荷比的离子束[(me-1)1(me-1)3]因其偏转半径与仪器的R值不同无法通过出口缝隙S2 ,所以被分离出来。 (me-1)2=4,即He+的质荷比,除He+之外,C卅很少,可忽略。
氦质谱检漏仪性能试验方法
反应时间、清除时间及其测定
反应时间是指仪器节流阀完全开启,本底讯号为零(或补偿到零)时,由恒定的氦流量使输仪表讯号上升到大值的(1-e-1)倍(即O. 63)所需要的时间,记为τR。清除时间是指输出仪表讯号稳定到大值后,停止送氦,其讯号下降到大值的e-1倍(即O.37)所需要的时间,记为τC。
工作真空、极限真空及入口处抽速
质谱室极限真空,尤其是工作真空及入口处抽速是表征仪器性能的重要参数。利用检漏仪的真空规可以测定仪器的极限真空和工作真空。利用流量计可测定仪器入口处抽速。
(作者: 来源:)