伺服驱动器与变频器的差异
伺服驱动器与变频器的差异:
变频器与伺服放大器在主回路与控制回路上的区别如下:
主回路:变频器与伺服的构成基本相同。两者的区别在于伺服中增加了称为动态制动器的部件。停止时该部件能吸收伺服电机积累的惯性能量,对伺服电机进行制动。
控制回路:与变频器相比,伺服的构成相当复杂。为了实现伺服机构,需要复杂的反馈、控制模式切换、限制(电流/速度/
广数伺服驱动器维修价格
伺服驱动器与变频器的差异
伺服驱动器与变频器的差异:
变频器与伺服放大器在主回路与控制回路上的区别如下:
主回路:变频器与伺服的构成基本相同。两者的区别在于伺服中增加了称为动态制动器的部件。停止时该部件能吸收伺服电机积累的惯性能量,对伺服电机进行制动。
控制回路:与变频器相比,伺服的构成相当复杂。为了实现伺服机构,需要复杂的反馈、控制模式切换、限制(电流/速度/转矩)等功能。
交流伺服驱动器多样化
交流
伺服驱动器专i用化和多样化
交流伺服驱动器虽然市场上存在通用化的伺服产品系列,但是为某种特定应用场合专门设计制造的伺服系统比比皆是。
利用磁性材料不同性能、不同形状、不同表面粘接结构(SPM)和嵌入式永磁(IPM)转子结构的电机出现,分割式铁芯结构工艺在日本的使用使永磁无刷伺服电机的生产实现了效率i高、大批量和自动化,并引起国内厂家的研究。
交流
伺服驱动器国际厂商伺服产品每5年就会换代,新的功率器件或模块每2~2.5年就会更新一次,新的软件算法则日新月异,总之产品生命周期越来越短。总结国内外伺服厂家的技术路线和产品路线,结合市场需求的变化,可以看到以下一些新发展趋势。
交流伺服驱动器现代交流伺服系统,经历了从模拟到数字化的转变,数字控制环已经无处不在,比如换相、电流、速度和位置控制;采用新型功率半导体器件、高i性能DSP加FPGA、以及伺服专i用模块(比如IR推出的伺服控制专i用引擎)也不足为奇。
怎么设置伺服驱动器的参数?
怎么设置
伺服驱动器的参数?
在自动化设备中,常常用到伺服电机,特别是方位操控,大部分的伺服电机都有方位操控功用,经过操控器宣布脉冲来操控伺服电机运行,脉冲数对应转的视点,脉冲频率对应速度(与电子齿轮设定有关),当一个新的体系,参数不能作业时,首要设定方位增益,确保电机无噪音状况下,尽量设大些,转动惯量比也非常重要,可经过自学习设定的数来参阅。然后设定速度增益和速度积分时间,确保在低速运行时连续,方位精度受控即可。
(1)位置比例增益
设定方位环调节器的份额增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,方位滞后量越小。但数值太大或许会引起振动或超调。参数数值由详细的伺服体系类型和负载状况确认。
(2)位置前馈增益
设定方位环的前馈增益。设定值越大时,表明在任何频率的指令脉冲下,方位滞后量越小方位环的前馈增益大,操控体系的高速呼应特性提高,但会使体系的方位不稳定,容易产生振动。不需要很高的呼应特性时,本参数通常设为0表明规模:0~
(作者: 来源:)