抑制式二级管
由于高灵敏度电子线路的绝缘耐压强度很低,使用中级保护器所达到的保护电平仍然过高。为此,还必须在保护线路内采用高一级保护措施——高灵敏度保护。
作为高灵敏度保护元件可以使用反应速度级快的抑制式二级管。现代高压防雷器,不仅用于限制电力系统中因雷电引起的过电压,也用于限制因系统操作产生的过电压。其动作时间可达纳秒范围。
浪涌保护器安装
抑制式二级管
由于高灵敏度电子线路的绝缘耐压强度很低,使用中级保护器所达到的保护电平仍然过高。为此,还必须在保护线路内采用高一级保护措施——高灵敏度保护。

作为高灵敏度保护元件可以使用反应速度级快的抑制式二级管。现代高压防雷器,不仅用于限制电力系统中因雷电引起的过电压,也用于限制因系统操作产生的过电压。其动作时间可达纳秒范围。电压限制也同样很好,约为额定电压的1.8倍左右。不过这种二级管也存在缺点,主要在于电流负荷量小和电容量高两个方面。额定电压为5VDC时放电电流为600A左右,特种二级管可达到900A。额定电压为5VDC以上时只允许几十安培的电流通过。
在常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。MOV将火线和地线连接在一起。
MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。气体放电器的动作时间在纳秒范围内,已经在远程通讯领域应用了好几十年,除上述优点外,其缺点是:点火性能受到时间的限制。 这些半导体具有随着电压变化而改变的可变电阻。当电压某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。
即便是没有造成设备损坏,但系统运行的异常和停顿都会带来很严重的后果。比如核电站、系统、大型工厂自动化系统、证券交易系统、电信局用交换机、网络关键等。
直接雷击是严重的事件,尤其是假如雷击击中靠近用户进线口排挤输电线。然而它在纳秒范围内的动作时间过程中反映速度要更快,而且没有电源续流的问题。在发生这些事件时,排挤输电线电压将上升到几十万伏特,通常引起尽缘闪络。雷电电流在电力线上传输的间隔为一公里或更远,在雷击点四周的峰值电流可达100kA或以上。在用户进线口处低压线路的电流每相可达到5kA到10kA。在雷电活动频繁的区域,电力设施每年可能有好几次遭受雷电直击事件引起严重雷电电流。而对于采用地下电力电缆供电或在雷电活动不频繁的地区,上述事件是很少发生的。
防雷器
又称过电压保护器、浪涌保护器、突波吸收保护器、电源防雷器、直流电源防雷器等,用于电源线防护的防雷器称为电源防雷器。从供电系统的进口(比如大厦的总配电房)开始逐步进行浪涌能量的吸收,对瞬态过电压进行分阶段抑制。鉴于目前的雷电致损特点,雷电防护尤其在防雷整改中,基于防雷器防护方案是简单、经济的雷电防护解决方案。防雷器的主要作用是瞬态现象时将其两端的电位保持一致或限制在一个范围内,转移有源导体上多余能量。
防雷器的一些主要技术参数:额定工作电压、额定工作电流,电源防雷器的标称通流容量。大通流容量,即防雷器转移雷电流、承受过电流的能力,以千安为单位,与波形形式有关。
(作者: 来源:)