首先分离是从无序到有序的过程,热力学第二定律说明从无序到有序的分离过程是一个熵减过程,因此不是一个自发的过程。分离技术不断面临新的挑战和机遇,尤其是随着生物技术的不断发展,越来越多,越来越复杂的生物分子需要进行分离。生物分子具有种类多、结构复杂、稳定性差、浓度低等特点。从简单到只有一个单元的氨基酸,到几十个氨基酸组成的多肽,再到上百个氨基酸组成的三维结构的蛋白,其分子量越来越大
连续流层析
首先分离是从无序到有序的过程,热力学第二定律说明从无序到有序的分离过程是一个熵减过程,因此不是一个自发的过程。分离技术不断面临新的挑战和机遇,尤其是随着生物技术的不断发展,越来越多,越来越复杂的生物分子需要进行分离。生物分子具有种类多、结构复杂、稳定性差、浓度低等特点。从简单到只有一个单元的氨基酸,到几十个氨基酸组成的多肽,再到上百个氨基酸组成的三维结构的蛋白,其分子量越来越大,结构也越来越复杂,对环境越来越敏感,也越来越不稳定,因此分离难度也随着分子量的增加而增加。由于多肽及蛋白被广泛地用于生物制药,随着生物制药的发展,其分离方法也相对成熟。
生物分子的分离可以根据其尺寸大小、表面电荷、疏水性能、及与配基的亲和作用性能的差异分别采用分子筛,离子交换,疏水,亲和等层析分离模式。为了率把目标生物分子从复杂样品里分离出来,并保持其生物活性,用于分离纯化的层析介质材料必须满足苛刻的要求。层析介质的性能主要取决于其介质材料组成、形貌、粒径大小、粒径分布、孔径大小和分布、功能基团、及表面亲水性能等。
目前市场上主流Protein A产品是GE生产的以琼脂糖为基质的产品,也是早商业化的产品。琼脂糖为基质的Protein A 介质具有载量高,亲水性能好,非特异性吸附低等优点,但琼脂糖介质天然缺陷是机械强度差,因此也被称为软胶。由于该介质耐压性能差,生产中需要降低柱高、减小流速以防止压力过高造成柱床塌陷,限制了抗
l体批处理量及抗
l体生产效率。软胶Protein A 另外一个缺陷是传质速度慢,主要原因是软胶孔径较小,排阻大。因此软胶Protein A 都需要驻保留时间长,流速慢条件下,抗
l体吸附载量才会比较高,但在高流速下动态载量下降的非常快。因此一个理想的抗l体纯化用Protein A 介质需要具有高流速,高载量,高机械强度,及更长的使用寿命等特点。Protein A 介质载量是由微球孔径,比表面积,配基密度来决定的;机械强度则是由Protein A基球材料化学组成,交联度及孔隙率来决定的;Protein A 配基脱落及使用寿命主要由配基,基球性能及偶联方式来决定。实现Protein A 亲和介质的国产化需要从底层开始。
Protein A 配基
除了基球之外,Protein A 配基也是影响介质性能重要因素,尤其是介质的寿命。GE之所以垄断Protein A 亲和层析介质市场,主要的是GE拥有耐碱性Protein A 技术,其核心技术是通过基因工程改变B domain 不耐碱的3个氨基酸以改善其耐碱性能。纳微通过优化组合不同片段设计出新序列的Protein A 配基,不仅耐碱性好,而且具有自主知识产权,并能自主实现大规模生产。纳微独有的耐碱性配基加上具有性能的基球,及优化偶联工艺开发出的Protein A 亲和介质。以下是某单抗项目上UniMab介质载量随使用次数增加的衰减变化表。每个cycle采用0.1M氢
l氧化钠CIP,接触时间1小时。连续200个cycle 后DBC10%依然在初始值的75%左右,充分体现了纳微ProteinA介质的良好耐碱性。
(作者: 来源:)