聚合物(PEDOT)的合成方法介绍
自从shirakawa et al发现了聚乙Q具有高导电率后,导电聚合物这个领域已引起了科学家的广泛兴趣。(8)防腐涂层PEDOT/PSS涂层结合了导电性、环境稳定性及可逆的氧化还原特性等物理化学性能,能够使金属表面发生活性钝化,催化生成致密氧化钝化膜,有效屏蔽腐蚀介质,避免与金属基体的进一步接触。经过近20年的发展,导电聚合物
导电聚合物公司
聚合物(PEDOT)的合成方法介绍
自从shirakawa et al发现了聚乙Q具有高导电率后,导电聚合物这个领域已引起了科学家的广泛兴趣。(8)防腐涂层PEDOT/PSS涂层结合了导电性、环境稳定性及可逆的氧化还原特性等物理化学性能,能够使金属表面发生活性钝化,催化生成致密氧化钝化膜,有效屏蔽腐蚀介质,避免与金属基体的进一步接触。经过近20年的发展,导电聚合物已经成为一门较为成熟的跨学科综合研究领域,重量轻、可加工性好,抗腐蚀和导电性是这类物质的特点。在众多导电聚合物中,聚(3,4一乙撑二氧S吩)(简称为PEDT)
PEDOT-显示器的未来?
—均质处理PEDOT
自百川英树等发现用碘或者氟h钾掺杂的聚y炔具有与金属相当的导电性,电导率可达10SS/cm以来,导电高分子成为科学的研究热点。厚膜电致发光:可经丝网印刷,制得透明电极,例如可用于厚膜电致发光。3,4y烯二氧基撑s吩(EDOT)的聚合物PEDOT具有的有点,如电导率高,透明性好,性能优良,在物体表面范围内的薄层产生作用,还具有较好的抗水解性,光稳定性,热稳定性以及优良的电化学性能
20世纪80年代后期,德国拜耳公司以PSS(聚对by烯磺酸)掺杂PEDOT,解决了PEDOT的溶解性问题,从而使PEDOT/PSS的应用更加广泛。
PEDOT/PSS悬浮液在塑料或玻璃表面,可以形成透明的PEDOT/PSS导电膜,不仅加工处理方便,而且具有可见光透过率高,用量小,抗水解性能好,绿色环保(水基分散体)等优点,使得PEDOT获得了巨大的商业成功,在有机薄膜太阳能电池材料,OLED材料,电致变色材料,透明电极材料等领域有广阔应用前景,在静电屏蔽也有应用。这种杂化的薄膜提供了多条导电通道,有利于载流子的传输和电荷收集,从而增强了器件响应的可靠性。
以玻碳电极(GCE)为基底电化学聚合制得聚3,4-乙烯二氧s吩(PEDOT)膜修饰电极,再通过Nafion共固定磷钼酸和石墨烯构建了一种新型的无酶电化学H2O2传感器. 利用扫描电子显微镜(SEM)表征制得的修饰电极,并通过循环伏安法和计时电流法研究了传感器对H2O2的响应性能. 结果表明,在优化条件下,该传感器对H2O2还原具有良好的电催化性能,检测H2O2的线性范围为2.91×10-6 ~ 1.83×10-2 molL-1,检出限和灵敏度分别为9.90×10-7 molL-1(S/N = 3)和112.5 μA(mmolL-1)-1. 此外,该传感器还具有良好的重现性和选择性.
调控导电高分子对阴离子的分子结构来调控对阴离子的位阻,实现了薄膜自抑制法聚合(SIP)新工艺,获得了可应用的PEDOT厚膜材料,使得便捷制备微米级高电导率(>103 S/cm)PEDOT薄膜成为可能。在此研究基础上,在自抑制效果下实现了高膜厚无气孔PEDOT:DBSA-Te点复合薄膜的同步生成。另外,对硅表面通过本征非晶硅层钝化,这样既能钝化硅又能改善电接触。通过新型Fe(III)氧化剂的自抑制作用,实现了PEDOT基体对均匀分散Te颗粒的紧密包覆,成功抑制了Te纳米颗粒的氧化。
(作者: 来源:)