企业视频展播,请点击播放视频作者:合肥宝发动力技术股份有限公司
DPF 结构设计的主要目标: (1) 通过增大入口孔的过滤体积,增加 DPF 的储灰能力,同时减少高碳烟负载时的背压;(2) 通过优化 DPF 的孔隙率和平均孔直径分布,适应不同催化剂涂敷量的要求(in-wall coating),保持低的压差损失;(3)通过在壁面上涂敷一层薄薄催化剂(on-wall coating)
叉车颗粒捕捉器
企业视频展播,请点击播放
视频作者:合肥宝发动力技术股份有限公司
DPF 结构设计的主要目标: (1) 通过增大入口孔的过滤体积,增加 DPF 的储灰能力,同时减少高碳烟负载时的背压;(2) 通过优化 DPF 的孔隙率和平均孔直径分布,适应不同催化剂涂敷量的要求(in-wall coating),保持低的压差损失;(3)通过在壁面上涂敷一层薄薄催化剂(on-wall coating)的设计,可以提高 DPF 的初始 PM 过滤效率,以及再生效率,消除深层过滤。所谓“in-wall coating”涂敷技术就是把含有催化剂的浆料均匀地 分布在 DPF 过滤壁内孔晶粒表面,达到增加碳烟 与催化剂接触面积的效果;而“on-wall coating” 技术就是在 DPF 入口过滤壁表面上涂敷一层很薄 的含催化剂的浆料,消除 DPF 壁深层过滤。

CPC3776的测量颗粒直径下限为2.5 nm。由于CPC3776位于SPCS中挥发性颗粒移除设备的下游,因此其测量了直径大于2.5 nm 的所有固态颗粒的粒子数浓度。在本研究中,不论其实际的物理或化学成分如何,固态颗粒的定义和PMP一样,是指排气经过SPCS系统中的挥发性颗粒移除设备处理后,由颗粒计数器计数的颗粒。因此,CPC3776可以用来测量废气后处理系统所有直径大于2.5 nm的固态颗粒物的过滤效率。此外,试验人员还使用1台差分迁移光谱仪(DMS,Cambustion公司DMS500)实时测量4.9~1 000.0 nm 范围内的颗粒物尺寸分布。所有粒子仪器在测试前都经过厂家校准。

所有仪器都在每个后处理系统3个取样位置进行了测量,即在TWC之前(位置500)、TWC和GPF之间(位置520)和GPF之后(位置600)。测量仪器在每个测点会进行3~6次测试。不确定度分析解释了在一些系统测试中样本大小不同的原因。本研究中给出的误差,代表95%置信度的不确定度。通过DMS设备测量的4台发动机颗粒物排放尺寸分布,纵轴表示在整个行驶循环中计算的每种尺寸等级下每公里的颗粒数排放数量。颗粒物尺寸分布形态是典型的直喷发动机的双峰分布。
首先,颗粒物直径大于23.0 nm的固态颗粒的过滤效率主要与炭烟颗粒的过滤有关。如图3所示,4台发动机的积聚模态主要由炭烟组成,具有相似的中等尺寸分布(70.0~100.0 nm)。此外,Olfert等已经证明GDI发动机的炭烟在各种发动机上具有相当相似的形态和有效密度。因此,预计不同发动机之间的颗粒特性不会有显著差异。
其次,废气流量也会影响过滤效率。因为炭烟颗粒的过滤主要是靠布朗运动,较低的废气流量将导致更高的过滤效率。每台发动机的循环平均废气流量如表3所示,平均废气流速范围为10.0~15.3 L/s。
(作者: 来源:)