液力耦合器中的循不夜压油,在从泵轮叶片内缘流句外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。液力耦合器要实现传动,必须在泵轮和涡轮之间有油液的循环流动。而油液循环流动的产生,是由于泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差所致。如果泵轮和呙轮的转速相等,则液力耦合器不起传动作用。汽车上所
矿用电机车生产厂家
液力耦合器中的循不夜压油,在从泵轮叶片内缘流句外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。液力耦合器要实现传动,必须在泵轮和涡轮之间有油液的循环流动。而油液循环流动的产生,是由于泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差所致。如果泵轮和呙轮的转速相等,则液力耦合器不起传动作用。汽车上所采用的液力传动装置通常有液力耦合器和夜力变矩器两种,二者均属于液力传动,即通过液体的循环液动,利用液体动能的变化来传递动力。
是液力耦合器的主动 部分:涡轮和输出轴连接在-起, 是波力耦合器的从动部分。泵轮和涡轮相对安装,统称为工作轮。在泵轮和呙轮上有 径向排列的平直叶片,泵轮和呙轮互不接触。两者之间有一定的间隙(约3mm~ 4mm);泵轮与呙轮装合成- -个整体后,其轴继面-般为圆形,在其内腔中充满液压油。液力耦合器在实际工作中的情形是:汽车起步前,变速器挂上一定的挡位 ,起祓动机驱动泵轮旋转,而与整车连接着的涡轮即受到力矩的作用,但因其力矩不足于克服汽车的起步阻力矩,所以呙轮还不会随泵轮的转动而转动。根据这原理,德国工程师费廷格创造了液力变扭器和液力偶合器,把涡轮和泵轮组合在一起,二者之间没有机械连结而只是通过液流循环来相互作用。内燃机车采用这种'软连结方式而设计的传动系统称作液力传动。冲向涡轮叶片的夜压油沿涡轮叶片向内缘流动,返回到泵轮内缘的夜压油,又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循不的液流。液力耦合器是一种液力传动装置,又称夜力联轴器。在不考虑机械损失的情况下,输出力矩与输入力矩相等。它的主 要功能有两个方面,一是防止发 动机过载,: I是调节工作机构的转速。其结构主要由壳体、泵轮、涡轮三个部分组成, 液力耦合器的壳体安装在发动机飞轮上,泵轮与壳体焊接在-起, 随发动机曲轴的转动而转动。由此可见,柴油机发出的大小不变的扭矩,经过变扭器就能变成满足列车牵引要求的机车牵引力。当机车需要惰力运行或进行制动时,只要将变扭器中的工作油排出到油箱,使泵轮和涡轮之间失去联系,柴油机的功率就不会传给机车的动轮了。
这使得机车降低 了造价也咸轻了重量,即在同样的机车重量下,它的机车功率一般都 比电传动机车大。另外,液力传动装置的可靠性高,维护工作简单,修理费也少。还有-个优点是,它的部件是密闭式的,无论风砂雨雪对它的工作都不产生什么坏的影响。与电力传动相比,液力传动不过是后起之秀。但它在与电传动的竞争中,异军突起,很快赢得了重要位置。液力传动装置的优点是不用电机,可以节省大童昂贵的铜,同时它的重里也轻些。液力变矩器是液力传动中的又-种型式,是构成液力自动变速器不可缺少的重要组成部分之一。它装置在发动机的飞轮上,其作用是将发动机的动力传递给自动变速器中的齿轮机构,并具有一定的自动变速功能。自动变速器的传动效率主要取决于变矩器的结构和性能。能用作驱动机车车轮的机械电动机不是无二的。水力机械中的涡轮机也有和电动机相类似的驱动特性。只要用柴油机带动一个泵,向涡轮提供具有某些压力的液流,而且能够把在涡轮中工作完毕后的液流 引回到泵的进口处,使液流循环工作,这套系统就可用作内燃机车的动力驱动系统。液力传动装置的主要组成部分是液力传动箱、车轴齿轮箱、换向机构和相互联结的万向轴等。它的核心元件是液力传动箱中的液力变扭器,主要由泵轮、涡轮和导向轮组成。液力耦合器中的循不夜压油,在从泵轮叶片内缘流句外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。
液力耦合器是由泵轮和涡轮组成的。泵轮与主动轴相连,涡轮与从动轴相接。如果不计机械损失,则液力耦合器的输入力矩与输出力矩相等,而输入与输出轴转速不相等。当涡轮转速比较小时,从涡轮流出的工作液是向后的,工作液冲击导轮叶片的前面。因为导轮被单向离合器限定不能向后转动,所以导轮叶片将向后流动的工作液导向向前推动泵轮叶片,促进泵轮旋转,从而使作用于涡轮的转矩增大。内燃机车有液力传动,电传动和机械传动等类型,其中电传动内燃机车应用,液力传动内燃机车次之,无论何种内燃机车的传动特性都符合牛马特征,所谓牛马特征就像骑自行车,人不能直接驱动车轮,需要链条作为传动机构把人发出的力变成自行车前进的动力,这就是牛马特征。

(作者: 来源:)