图2量程可调式传感器改进部分模型Fi霍尔式磁性液体微压差传感器静态参数优化2.1模型和Pareto解方法对图1中磁性液体微压差传感器模型进行,新型霍尔式磁性液体微压差传感器的初始结构参数如表1所示。表1传感器结构参数Ta传感器尺寸参数数值中间永磁体与两侧永磁体初始间距lg15中间永磁体长度lh10中间永磁体宽度dc6环形永磁体长度lm10玻璃管直径d08运用磁场有限元软件来计算传感
滚圆机批发
图2量程可调式传感器改进部分模型Fi霍尔式磁性液体微压差传感器静态参数优化2.1模型和Pareto解方法对图1中磁性液体微压差传感器模型进行,新型霍尔式磁性液体微压差传感器的初始结构参数如表1所示。表1传感器结构参数Ta传感器尺寸参数数值中间永磁体与两侧永磁体初始间距lg15中间永磁体长度lh10中间永磁体宽度dc6环形永磁体长度lm10玻璃管直径d08运用磁场有限元软件来计算传感器玻璃管内部的磁场,建立模型。
设计合成了胆固醇修饰的环糊精衍生物(CD—CHOL)以及偶氮苯修饰的聚化合物(PAA—Azo),通过气液界面组装成功制备了Langmuir膜,由表面压-分子面积等温线表征界面铺展行为,采用原子力显微镜(AFM)对单层Langmuir膜的形貌进行了表征,进一步通过紫外光谱、圆二色谱、红外光谱、X射线光电子能谱研究组装膜中环糊精与偶氮团的自组装过程与主客体识别机理。

不同粒度硅砂对高应变点玻璃熔制质量的分析图1和图2分别为不同粒度硅砂配合料熔制(熔制温度1400℃)的高应变点玻璃样品的显微镜图像和样品未熔物及气泡分析图。从图1和图2中可明显看出,未筛分的硅砂熔制出的高应变点玻璃样品中的未熔物,筛分后的硅砂熔制出的玻璃样品随硅砂目数的增大,未熔物逐渐减少,而气泡数量呈逐渐增多的趋势。

(作者: 来源:)