研究了十八胺(ODA)及其与硬脂酸(SA)混合单分子膜在导电聚合物聚3,4-乙烯二氧噻吩/聚b乙烯磺酸(PEDOT- PSS)胶体亚相上的成膜行为和复合LB膜在室温下的电学性能.结果表明:ODA-SA/PEDOT-PSS复合LB膜具有更好的成膜性能,表面粗糙度小且稳定可控,薄膜具有较好的有序结构;ODA-SA/PEDOT-PSS膜电导率高于ODA/PEDOT- PSS复合LB膜
导电聚合物厂
研究了十八胺(ODA)及其与硬脂酸(SA)混合单分子膜在导电聚合物聚3,4-乙烯二氧噻吩/聚b乙烯磺酸(PEDOT- PSS)胶体亚相上的成膜行为和复合LB膜在室温下的电学性能.结果表明:ODA-SA/PEDOT-PSS复合LB膜具有更好的成膜性能,表面粗糙度小且稳定可控,薄膜具有较好的有序结构;ODA-SA/PEDOT-PSS膜电导率高于ODA/PEDOT- PSS复合LB膜,其电导率呈各向异性,水平电导率(σ_‖)与垂直电导率(σ_⊥)之间相差3~4个数量级,Ⅰ-Ⅴ曲线呈指数关系,为典型的电子隧穿类型.
单体3,4-乙撑二氧吩(EDOT)的合成情况
J、D、Stenger-Smith et.all于1998年采用下述方法合成了EDOT。PSS在ITO基片上旋涂作为空穴传输层,并且在旋涂PEDOT∶PSS的过程中在与ITO玻璃平面垂直的方向施加一个诱导聚合物取向的高压电场,试验着重研究了所加电场强度对双层器件:ITO/PEDOT∶PSS/MEH-PPV/Al器件性能的影响。反应从l代二甘酸(HOOCH –s-CH COOH)开始,通过一系列的步骤合成2,5-二羧酸-3、4-乙撑二氧吩,然后通过催化剂脱羧而制成了3、4-乙撑二氧吩
该合成法产率低,成本高。改进或找到一种新的合成方法以提高EDOT的产率、降低生产成本是当前科研工作者的主要任务。笔者在合成EDOT的过程中对该方法进行了一些改进,如引入相转移催化剂和沸石分子筛,提高了EDOT的产率。
PEDOT:PSS的应用领域:太阳能电池
与传统无机电池相比,聚合物太阳能电池具有重量轻、成本低、可湿法成膜制造,可做柔性器件等优点。将掺杂的PEDOT∶PSS薄膜作为缓冲层应用于聚合物电池(ITO/PEDOT∶PSS/P3HT∶PCBM/LiF/Al)中,发现高电导率的PEDOT∶PSS降低了器件的串联电阻,增加了器件的短路电流,从而提高了器件的性n。PEDOT/PSS应用主要体现在如下方面:一方面作为透明的导电层沉积在电极活性层表面或是沉积在电极基材表面;另一方面作为缓冲层沉积在透明电极和活性层之间。
PEDOT:PSS的应用领域:电致变色材料
导电高分子的电致变色研究是电致变色领域中的重要研究方向。均质处理后,样品温度会略微升高,此时在试管中的流动状态仍为液体。PEDOT/PSS水性涂料自身优异的可加工性为规模制造的电致变色器件提供了可能性。这类材料可应用于电致变色智能窗、电致变色显示器、无眩反射镜、电色储存器件、红外发s器件、雷达吸波材料等多个领域。
原位聚合法不需要特殊设备、操作简单、膜厚可控、可涂布于各种形状的表面,尤其对找不到合适溶液的导电聚合物和某些特殊表面具有优势,且聚合方式种类多样,合成PEDOT薄膜的全过程中可通过掺杂改变聚合物结构,获得的聚合物电导率高、应用前景广阔,是制备PEDOT薄膜对电极新的趋势。电化学聚合法电化学聚合亦可简称为电解聚合、电聚合或电引发聚合,是指在有适当电解液的电解池里,按一定的电化学方式进行电解,使单体在电极上发生聚合反应。 与以往传统的和碳对电极相比,PEDOT具有高电导率、透明性以及柔性等优点。三种薄膜制备方法各有优缺点,促进了PEDOT薄膜对电极的发展,也使得DSSC取得了巨大的进步。
(作者: 来源:)