伺服驱动器常见问题以及解决办法
伺服驱动器常见问题以及解决办法:进口伺服驱动器_松下伺服驱动器因为精度高,被广泛应用于设备市场,相对于国产伺服来说,使用过程中的问题也是较少的,对于常见的一些问题,也做了一个整理,希望对大家有所帮助。
1、松下交流伺服系统的使用中,能否用伺服-ON作为控制电机脱机的信号,以便直接转动电机轴
尽管在SRV-ON信号断开时电机能够脱机(处
华中伺服驱动器维修电话
伺服驱动器常见问题以及解决办法
伺服驱动器常见问题以及解决办法:进口伺服驱动器_松下伺服驱动器因为精度高,被广泛应用于设备市场,相对于国产伺服来说,使用过程中的问题也是较少的,对于常见的一些问题,也做了一个整理,希望对大家有所帮助。
1、松下交流伺服系统的使用中,能否用伺服-ON作为控制电机脱机的信号,以便直接转动电机轴
尽管在SRV-ON信号断开时电机能够脱机(处于自由状态),但不要用它来启动或停止电机,频繁使用它开关电机可能会损坏驱动器。如果需要实现脱机功能时,可以采用控制方式的切换来实现:假设伺服系统需要位置控制,可以将控制方式选择参数No02设置为2,即方式为位置控制,第二方式为转矩控制。然后用C-MODE来切换控制方式:在进行位置控制时,使信号C-MODE打开,使驱动器工作在方式(即位置控制)下;在需要脱机时,使信号C-MODE闭合,使驱动器工作在第二方式(即转矩控制)下,由于转矩指令输入TRQR未接线,因此电机输出转矩为零,从而实现脱机。
3、松下交流伺服工作在模拟控制方式下,位置信号由驱动器的脉冲输出反馈到计算机处理,在装机后调试时,发出运动指令,电机就飞车,什么原因
这种现象是由于驱动器脉冲输出反馈到计算机的A/B正交信号相序错误、形成正反馈而造成,可以采用以下方法处理:
A.修改采样程序或算法;
B.将驱动器脉冲输出信号的A+和A-(或者B+和B-)对调,以改变相序;
C.修改驱动器参数No45,改变其脉冲输出信号的相序。

伺服驱动器模式切换有什么实用性
接触过这个行业的人都知道,所有伺服驱动器都有三种基本控制模式:位置控制、速度控制和扭矩控制。这三种基本控制模式,那么伺服驱动器模式切换有什么实用性小编会跟大家详细了解介绍。
1.位置控制模式通常通过外部输入脉冲的频率来确定旋转速度,通过脉冲的数量来确定旋转角度。通用定位装置。如数控机床、印刷机等。
2.速度控制是指电机根据给定的速度指令运行。通常,电机的转速和旋转方向由给定模拟量的大小和方向决定。典型应用包括:需要响应的连续速度控制系统。
3.转矩控制方法是通过输入外部模拟量或直接分配地址,将电机轴的输出转矩设定到外部,适用于对材料应力要求严格的卷绕和退绕装置。
在大多数应用中,我们只使用一种驾驶控制模式。然而,在某些应用中,我们需要在任意两种驾驶模式之间切换。切换模式可通过RS485通信或终端控制给出。下面简要介绍在抛光机上切换电动伺服位置模式和扭矩模式的应用实例。
该设备是电热水壶内壁抛光设备。由于釜内为弧面,必须采用力矩方式对釜内壁进行抛光,通过控制电机的力矩来控制砂光片对釜内壁的抛光力。该设备的技术要求是伺服电机控制机械臂的左右横向运动,控制机械臂上下运动。机械臂左右横向运动采用位置控制方式,上下采用位置和力矩切换方式。机械臂的上下控制要求如下:当机械臂下降到釜内指i定位置时,会立即切换到扭矩模式,旋转机械臂带动磨砂片打磨釜内。
采用伺服驱动器—电动机互馈对拖的测试平台
交流伺服驱动器:这种测试系统由四部分组成,分别是三相PWM整流器、被测伺服驱动器—电动机系统、负载伺服驱动器—电动机系统及上位机,其中两台电动机通过联轴器互相连接。被测电动机工作于电动状态,负载电动机工作于发电状态。被测伺服驱动器—电动机系统工作于速度闭环状态,用来控制整个测试平台的转速,负载伺服驱动器—电动机系统工作于转矩闭环状态,通过控制负载电动机的电流来改变负载电动机的转矩大小,模拟被测电机的负载变化,这样互馈对拖测试平台可以实现速度和转矩的灵活调节,完成各种试验功能测试。上位机用于监控整个系统的运行,根据试验要求向两台伺服驱动器发出控制指令,同时接收它们的运行数据,并对数据进行保存、分析与显示。
对于这种测试系统,采用高i性能的矢量控制方式对被测电动机和负载设备分别进行速度和转矩控制,即可模拟各种负载情况下伺服驱动器的动、静态性能,完成对伺服驱动器的测试。但由于使用了两套伺服驱动器—电动机系统,所以这种测试系统体积庞大,不能满足便携式的要求,而且系统的测量和控制电路也比较复杂、成本也很高。
怎么设置伺服驱动器的参数?
怎么设置伺服驱动器的参数?
(1)手动调整增益参数
调整速度份额增益KVP值。当伺服体系安装完后,有必要调整参数,使体系稳定旋转。首要调整速度份额增益KVP值.调整之前有必要把积分增益KVI及微分增益KVD调整至零,然后将KVP值逐渐加大;同时调查伺服电机停止时足否产生振动,并且以手动方法调整KVP参数,调查旋转速度是否显着忽快忽慢.KVP值加大到产生以上现象时,有必要将KVP值往回调小,使振动消除、旋转速度稳定。此刻的KVP值即开始确认的参数值。如有必要,经KⅥ和KVD调整后,可再作重复修正以到达理想值。
调整积分增益KⅥ值。将积分增益KVI值逐渐加大,使积分效应逐渐产生。由前述对积分操控的介绍可看出,KVP值合作积分效应增加到临界值后将产生振动而不稳定,如同KVP值一样,将KVI值往回调小,使振动消除、旋转速度稳定。此刻的KVI值即开始确认的参数值。
调整微分增益KVD值。微分增益首要目的是使速度旋转平稳,下降超调量。因而,将KVD值逐渐加大可改进速度稳定性。
调整方位份额增益KPP值。假如KPP值调整过大,伺服电机定位时将产生电机定位超调量过大,形成不稳定现象。此刻,有必要调小KPP值,下降超调量及避开不稳定区;但也不能调整太小,使定位功率下降。因而,调整时应小心合作。
(2)主动调整增益参数
现代伺服驱动器均已微计算机化,大部分供给主动增益调整( autotuning)的功用,可应付多数负载状况。在参数调整时,可先运用主动参数调整功用,必要时再手动调整。
事实上,主动增益调整也有选项设置,一般将操控呼应分为几个等级,如高呼应、中呼应、低呼应,用户可依据实践需求进行设置。

-->