负性光刻胶
负性光刻胶
负性光刻胶分为粘性增强负性光刻胶、加工负性光刻胶、剥离处理用负性光刻胶三种。
A、粘性增强负性光刻胶
粘性增强负胶的应用是在设计制造中替代基于聚异戊二烯双叠氮的负胶。粘性增强负胶的特性是在湿刻和电镀应用时的粘附力;很容易用光胶剥离器去除,厚度范围是﹤0.1 ~ 120.0 μm,可在i、g以及h-line波长曝光。
NR9 3000PY光刻胶公司
负性光刻胶
负性光刻胶
负性光刻胶分为粘性增强负性光刻胶、加工负性光刻胶、剥离处理用负性光刻胶三种。
A、粘性增强负性光刻胶
粘性增强负胶的应用是在设计制造中替代基于聚异戊二烯双叠氮的负胶。粘性增强负胶的特性是在湿刻和电镀应用时的粘附力;很容易用光胶剥离器去除,厚度范围是﹤0.1 ~ 120.0 μm,可在i、g以及h-line波长曝光。
粘性增强负胶对生产量的影响,消除了基于溶液的显影和基于溶液冲洗过程的步骤。优于传统正胶的优势:控制表面形貌的优异带宽、任意甩胶厚度都可得到笔直的侧壁、具有一次旋涂即可获得100 μm甩胶厚度、厚胶层同样可得到优越的分辨率、150 ℃软烘烤的应用可缩短烘烤时间、优异的光速度进而增强曝光通量、更快的显影,100 μm的光胶显影仅需6 ~ 8分钟、光胶曝光时不会出现光胶气泡、可将一个显影器同时应用于负胶和正胶、不必使用粘度增强剂。目前,国外阻抗已达到15次方以上,而国内企业只能做到10次方,满足不了客户工艺要求和产品升级的要求,有的工艺虽达标了,但批次稳定性不好。
i线曝光用粘度增强负胶系列:NP9–250P、NP9–1000P、NP9–1500P、NP9–3000P、NP9–6000P、NP9–8000、NP9–8000P、NP9–20000P。
g和h线曝光用粘度增强负胶系列:NP9G–250P、NP9G–1000P、NP9G–1500P、NP9G–3000P、NP9G–6000P、NP9G–8000。
B、加工负胶
加工负胶的应用是替代用于RIE加工及离子植入的正胶。加工负胶的特性在RIE加工时优异的选择性以及在离子植入时优异的温度阻抗,厚度范围是﹤0.1 ~ 120.0 μm,可在i、g以及h-line波长曝光。
加工负胶优于正胶的优势是控制表面形貌的优异带宽、任意甩胶厚度都可得到笔直的侧壁、具有一次旋涂即可获得100 μm甩胶厚度、厚胶层同样可得到优越的分辨率、150 ℃软烘烤的应用可缩短烘烤时间、优异的光速度进而增强曝光通量、更快的显影,100 μm的光胶显影仅需6 ~ 8分钟、光胶曝光时不会出现光胶气泡、可将一个显影器同时应用于负胶和正胶、优异的温度阻抗直至180 ℃、在反应离子束刻蚀或离子减薄时非常容易地增加能量密度,从而提高刻蚀速度和刻蚀通量、非常容易进行高能量离子减薄、不必使用粘度促进剂。一般情况下,一个芯片在制造过程中需要进行10~50道光刻过程,由于基板不同、分辨率要求不同、蚀刻方式不同等,不同的光刻过程对光刻胶的具体要求也不一样,即使类似的光刻过程,不同的厂商也会有不同的要求。
用于i线曝光的加工负胶系列:NR71-250P、NR71-350P、NR71-1000P、NR71-1500P、NR71-3000P、NR71-6000P、NR5-8000。
光刻工艺主要性一
光刻胶不仅具有纯度要求高、工艺复杂等特征,还需要相应光刻机与之配对调试。一般情况下,一个芯片在制造过程中需要进行10~50道光刻过程,由于基板不同、分辨率要求不同、蚀刻方式不同等,不同的光刻过程对光刻胶的具体要求也不一样,即使类似的光刻过程,不同的厂商也会有不同的要求。3.你们是否有可以替代ShipleyS1805的用于DVD的应用产品。
针对不同应用需求,光刻胶的品种非常多,这些差异主要通过调整光刻胶的配方来实现。因此,通过调整光刻胶的配方,满足差异化的应用需求,是光刻胶制造商核心的技术。
此外,由于光刻加工分辨率直接关系到芯片特征尺寸大小,而光刻胶的性能关系到光刻分辨率的大小。限制光刻分辨率的是光的干涉和衍射效应。光刻分辨率与曝光波长、数值孔径和工艺系数相关。
NR9-3000PY
四、对准(Alignment)
光刻对准技术是曝光前的一个重要步骤作为光刻的三大核心技术之一,一般要求对准精度为细线宽尺寸的 1/7---1/10。随着光刻分辨力的提高 ,对准精度要求也越来越高 ,例如针对 45am线宽尺寸 ,对准精度要求在5am 左右。
受光刻分辨力提高的推动 ,对准技术也经历 迅速而多样的发展 。从对准原理上及标记结 构分类 ,对准技术从早期的投影光刻中的几何成像对准方式 ,包括视频图像对准、双目显微镜对准等,一直到后来的波带片对准方式 、干涉强度对准 、激光外差干涉以及莫尔条纹对准方式 。从对准信号上分 ,主要包括标记的显微图像对准 、基于光强信息的对准和基于相位信息对准。显示器,OLEDs,波导(waveguides),VCSELS,成像,电镀,纳米碳管,微流体,芯片倒装等方面。
(作者: 来源:)