T4 RNA Ligase主要用于RNA和RNA之间的连接,连接时需要5'磷酸基团和3'羟基的存在。不仅可以进行RNA分子间的连接,也可以进行RNA分子(zui短8个碱基)的环化连接。
T4 RNA Ligase可以用于RNA和单核苷酸之间的连接,单核苷酸必须为5'和3'均磷酸化的形式,此时常用于RNA的3'末端标记。
T4 RNA Ligase也可以用于DNA
DNA酶I
T4 RNA Ligase主要用于RNA和RNA之间的连接,连接时需要5'磷酸基团和3'羟基的存在。不仅可以进行RNA分子间的连接,也可以进行RNA分子(zui短8个碱基)的环化连接。
T4 RNA Ligase可以用于RNA和单核苷酸之间的连接,单核苷酸必须为5'和3'均磷酸化的形式,此时常用于RNA的3'末端标记。
T4 RNA Ligase也可以用于DNA和RNA之间的连接。当DNA提供5'磷酸基团,RNA提供3'羟基时,连接效率较高;当DNA提供3'羟基,RNA提供5'磷酸基团时,连接效率非常低。
T4 RNA Ligase也可以用于DNA和DNA之间的连接,但连接效率非常低。主要用于DNA的环化连接,例如5' RACE中的cDNA环化。DNA和DNA之间的连接尽管可以进行,但比较困难。
据研究表明RNA聚合酶拥有现代蛋白质聚合酶的许多特征,它可以进化从而识别出RNA启动子,然后copy RNA。研究意味着,生命进化早期出现的同样的RNA酶也可能表现出如此复杂的生物学特征。
有证据表明,RNA先于DNA和蛋白质出现。例如,人体细胞内制造蛋白质的“机器”核糖体就由RNA制造而成。此外,DNA也由RNA组成。由于RNA是一种万1能工具,可以同时发挥蛋白质和DNA的功能,这表明后来进化出现的DNA和蛋白质是一种“升级”,以增强起初由RNA支持的细胞功能。昂劳实验室发现的聚合酶表明,RNA copy在原始生命体内确实可能存在。
当DNA聚合酶 III沿着滞后链模板移动时,由特异的引发酶催化合成的RNA引物即可以由DNA聚合酶 III所延伸,合成DNA。当合成的DNA链到达次合成的冈崎片段的位置时,滞后链模板及刚合成的冈崎片段从DNA聚合酶 III上释放出来。由于copy叉继续向前运动,便又产生了一段单链的滞后链模板,它重新环绕DNA聚合酶 III,通过DNA聚合酶III开始合成新的滞后链冈崎片段。通过这种机制,前导链的合成不会超过滞后链太多,这样引发体在DNA链上和DNA聚合酶 III以同一速度移动。在copy叉附近,形成了以DNA聚合酶 III二聚体、引发体和解旋酶构成的类似核糖体大小的以物理方式结合成的复合体,称为DNA copy体。copy体在DNA前导链模板和滞后链模板上移动时便合成了连续的DNA前导链,以及由许多冈崎片段组成的滞后链。当冈崎片段形成后,DNA聚合酶I通过其 5'→3'外切酶活性切除冈崎片段上的RNA引物,并利用后一个冈崎片段作为引物由 5'→3'合成DNA填补缺口。zui后由DNA连接酶将冈崎片段连接起来,形成完整的DNA滞后链。

(作者: 来源:)