负压稀相(风机为动力源)气力输送方式如何实现高温物料输送 负压稀相(风机为动力源)气力输送方式如何实现高温物料输送? 我们知道负压稀相气力输送,输送时高温物料会加热输送介质(空气),加热后的空气需要通过风机排出。所以负压气力输送的方式,需要考虑到风机能承受的工作温度。 1. 罗茨风机工作温度(常温下) 按照我们一般的经验,罗茨风机出口温度和压力有直接的关系,压力升高1K
大料仓存储设备厂家
负压稀相(风机为动力源)气力输送方式如何实现高温物料输送
负压稀相(风机为动力源)气力输送方式如何实现高温物料输送?
我们知道负压稀相气力输送,输送时高温物料会加热输送介质(空气),加热后的空气需要通过风机排出。所以负压气力输送的方式,需要考虑到风机能承受的工作温度。
1. 罗茨风机工作温度(常温下)
按照我们一般的经验,罗茨风机出口温度和压力有直接的关系,压力升高1Kpa,温度会升高1℃。
风机的出口温度=入口温度+压力(Kpa)
一般罗茨风机的出口温度不能高于85℃,高温型的可以到120℃。
2. 高温物料气力输送系统中,如何降低风机的出口温度呢?
1)降低入口温度
2)降低输送压力
3.高温物料气力输送系统中,如何降低风机入口温度?
1)在风机入口处做盘管式冷却器
2)加大输送风机的风量,在风机前端通入常温空气,冷却入口高温空气
3.高温物料气力输送系统中,如何降低风机压力?
加大输送风机的风量,在风机前端通入常温空气,冷却入口高温空气,也可以起到降低风机压力的作用。
降低风机压力的方法:加大风机的风量,一般设计风量要是正常情况下的2-3倍,输送管径也加大一倍,大大降低输送压力。

正压浓相气力输送系统输送流速低
系统输送速度低,出口初速度为5m/s,末速度为15m/s(视距离而定)。
正压浓相气力输送管道磨损小
由于采用较低的输送速度,而气力输送的管道磨损与输送流速成立方比例,降低管道流速必然大大降低管道磨损,增长了使用寿命,降低了运行费用。
正压浓相气力输送进料阀采用的气动圆顶阀
阀门结构可靠,寿命长,检修维护简便,采用的气封式结构,阀门启闭时阀芯与可充气密封圈之间无接触,可确保使用寿命可达50万次。
粉体输送系统的设计过程中需要较好的输送速度
在粉体输送系统的设计过程中,综合考虑各种因素,需要较好的输送速度。输送速度应能保证物料在粉料输送系统中输送管道的畅通。当转速过低时,阻力系数增大,摩擦压力损失增大。
如果速度太快,系统的能耗会增加。同时,物料在输送过程中对管壁的冲击和碰撞会加速,导致物料破损增加,输送管道和弯头的磨损加剧,使用寿命降低,影响经济。
因此,在粉料输送系统中,不能越快越好,也不能越慢越好,也就是说,以上所述需要根据物料的特性选择一个较好的经济运行速度。
在悬浮原理上,在粉体输送系统中,只要输送物料的气流速度略高于其悬浮速度,物料就可以悬浮并被吹走,实现输送。
然而,在实际应用中,由于两相流管道,物质粒子与管道之间的摩擦和碰撞,气流在管道截面的不均匀分布,以及材料在每个肘部被减速等,将会影响到材料的运输,导致阻塞,所以运输风速远远高于悬浮速度。

气体、液体输送控制阀与粉体颗粒输送阀在设计原理上的本质区别
对于工程师来说,选择用于粉体输送系统的控制阀是一项极大的挑战。这是因为在市场上存在各种各样的阀门可用选择,但绝大多数阀门在处理粉体颗粒物料时总是存在这样那样的问题。粉粒体输送对于阀门的选型有着更高的要求。本文着重阐述了气体、液体输送控制阀与粉体颗粒输送控制阀在设计原理上的本质区别,希望对广大服务于化工行业、食品加工行业等有着粉体颗粒输送的要求的工程师有所帮助。
-->