处理措施就是联轴器的重新找正,确保同心度在偏差允许值内。联轴器对中找正应注意的是:一是,应以锅炉离心引风机的联轴器为基准,测定和调整锅炉离心引风机电机来保证电机与风机两轴线同轴;二是,电机的四个地脚螺栓必须对角均匀紧固后才能读数;三是,盘动联轴器时转向应与风机运转方向一致。调整的顺序应是;首先,使两联轴器轴线平行,即先保证轴向百分表的四个读数相差值符合本文表1
锅炉离心引风机
处理措施就是联轴器的重新找正,确保同心度在偏差允许值内。联轴器对中找正应注意的是:一是,应以锅炉离心引风机的联轴器为基准,测定和调整锅炉离心引风机电机来保证电机与风机两轴线同轴;二是,电机的四个地脚螺栓必须对角均匀紧固后才能读数;三是,盘动联轴器时转向应与风机运转方向一致。调整的顺序应是;首先,使两联轴器轴线平行,即先保证轴向百分表的四个读数相差值符合本文表1 的允许值;其次,使两联轴器轴线同高,即先调整左右径向偏差,后调整上下高差,直至符合本文的允许值。5,集流器、叶轮、蜗壳等各流体区域结合处的公共面采用interface边界类型面,将叶片的压力面和吸力面以及叶轮前盘、后盘和转轴的内外表面一起定义为旋转壁面。在实际工作中,常用的打表工具———磁性表座虽然使用简便,但却存在着刚性不足和适用条件受限的不良情况。
对于重要和安装要求高的风机,有必要设计和制作一个表架配合百分表进行测量,锅炉离心引风机主要由抱箍、角钢表架等组成。,主要是U102 除尘风机振动偏大需重新校正联轴器对中。本文将对加米字支撑架的集流器和普通圆弧形集流器进行整机数值模拟,重点分析这2种结构形式对掘进工作面的粉尘的导流效果,并对比其对风机性能的影响,为掘进工作面降尘效率的提高提供理论依据。现场检修人员反映,在打表过程中,径向百分表下方读数不时出现异常情况:电机垫高已经很明显,但读数却不变或变小(当时百分表探头打在风机端半联轴器上,此情况下,如电机垫高,径向百分表在下方读数应增大)。异常读数的出现,严重干扰了检修正常进行。凭多年经验并仔细观察后发现,当联轴器转到下方时,百分表探头已脱离半联器近0.5 mm,即此时百分表探头已不起作用,百分表出现假读数。
针对锅炉离心引风机有无进气箱两种结构形式,建立了两种计算模型,利用CFX 软件对两种模型进行数值模拟,研究其内部三维流场特性,基于数值模拟结果分析了进气箱对离心风机的性能影响。数值模拟结果表明:加进气箱后,离心风机的全开流量与压力有所降低,缩短了有效工作区域;在锅炉离心引风机内部叶轮进口处产生涡旋现象,堵塞了叶轮流道,使风机的效率和压力降低。数值模拟结果与实验测试值对比是比较吻合。这种分布不均匀的现象会直接堵塞叶轮出口,从而使叶轮发生周期性的加速或减速,进而降低离心风机的工作效率,缩小了锅炉离心引风机工作的范围,影响了金属叶轮的平稳运行。进气箱是离心风机重要的组成部分,主要应用于大型离心风机与双吸离心风机。进气箱在其出口处气体发生近90°转弯,内部流场十分复杂,并造成很大的流动损失。其出口速度的不均匀性对锅炉离心引风机性能影响明显,有必要对其特性进行研究。A.G.Sheard通过研究加进气箱的通风机,在锅炉离心引风机叶轮进口加导流板控制叶轮进口的非均匀气流,结果表明在叶轮进口加导流板能够提高风机的全压,并得出了叶片根部断裂的原因。使用三维粒子动态分析仪(3D-PDA)对大型风机进气箱内部三维气体流场进行测量,揭示了其内部流动的基本特征,为了解进气箱流场结构和流动机理提供了依据。
几何模型建立与网格划分
计算模型采用掘进工作面4-72-5.6A 防爆防腐蚀的离心式通风机,其主要参数:电机功率22 kW,转速2 930 r/min,流量10 122~25 736 m3/h,全压4 152~2 330 Pa。其主要由进风口、集流器、叶轮和蜗壳组成。
锅炉离心引风机集流器中添加了米字形结构与环形挡环。风机结构复杂且叶片外形不规则,因此生成结构化网格比较困难,相反非结构化网格适应能力强,在处理复杂结构时有利于网格的自适应。
因此锅炉离心引风机采用四面体非结构化网格。使用ANSYS 软件中的CFD 软件进行网格划分,加米字形集流器模型网格数1 072 503,网格节点数184 910;普通圆弧形模型网格数1 296 832,网格节点数223 847。以离心风机在掘进工作面环境下的运行工况为依据,进行锅炉离心引风机参数设置:流量取22 806.54 m3/h,流速取6.335 15 m/s, 质量流量取7.491 3 kg/s。针对锅炉离心引风机有无进气箱两种结构形式,建立了两种计算模型,利用CFX软件对两种模型进行数值模拟,研究其内部三维流场特性,基于数值模拟结果分析了进气箱对离心风机的性能影响。把Pro/E 建立的几何模型导入Fluent 中并对几何模型的边界条件计算参数进行设定。其中入口类型采用速度进口,出口设为压力边界条件,本计算采用的样机是矿用式离心风机, 出口静压可以近似为0,蜗壳内壁及叶轮壁面粗糙度均取0.5,集流器、叶轮、蜗壳等各流体区域结合处的公共面采用interface边界类型面, 将叶片的压力面和吸力面以及叶轮前盘、后盘和转轴的内外表面一起定义为旋转壁面。环境压力为101 325 Pa,取粉尘流体密度ρ=1.225 kg/m3。计算时采用SIMPLE 压力速度耦合方法进行。
锅炉离心引风机性能试验原理及其装置为了验证修正后数值计算模型的准确度,对原风机的不同工况气动性能试验。将修正前后数值计算模型预测原型机性能结果与试验值作对比分析,由数据可知,采用标准k-ε 模型预测的风机性能曲线较试验值存在一定误差,其较大误差值达9.5%,修正的k-ε 模型,各流量工况下锅炉离心引风机出口静压计算值与试验值吻合,其性能曲线趋于重合,两者误差值明显减小,且较大误差降低至3%,充分验证了所采用的数值计算模型修正方法的可行性,同时为下文锅炉离心引风机性能的准确度和可靠性预测提供支撑。在小流量区,风机内部的流场分布发生偏心现象(C处