图像处理技术:运用图像处理技术解决识别的研究早始于80年代,但国内外均只是就识别中的某一个具体问题进行讨论,并且通常仅采用简单的图像处理技术来解决,并没有形成完整的系统体系,识别过程是使用工业电视摄像机拍下汽车的工前方图像,然后交给计算机进行简单的处理,并且终仍需要人工干预,例如牌照中省份汉字的识别问题。车牌识别过程包括图像采集、预处理、车牌定位、字符分割、字符识别、结果输出等
工地劳务系统安装电话
图像处理技术:运用图像处理技术解决识别的研究早始于80年代,但国内外均只是就识别中的某一个具体问题进行讨论,并且通常仅采用简单的图像处理技术来解决,并没有形成完整的系统体系,识别过程是使用工业电视摄像机拍下汽车的工前方图像,然后交给计算机进行简单的处理,并且终仍需要人工干预,例如牌照中省份汉字的识别问题。车牌识别过程包括图像采集、预处理、车牌定位、字符分割、字符识别、结果输出等一系列算法运算,其运行流程如下:图像采集。
可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数。可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器。识别速度决定了一个车牌识别系统是否能够满足实时实际应用的要求。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果。
车牌辨识既然是“系统”,当中软硬件架构的好坏,当然会影响“呈现的结果”。至于什么样的软件跟硬件,适合什么样的环境,这就必须因环境而异,因为不同的应用环境,对于辨识率的要求未必相同,而这就必须靠经验累积。另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。尽管市场上有林林总总的车牌辨识系统,用对产品与架构,可以省去很多的冤枉钱跟时间,但更重要的是,工程商与系统整合商需要多方配合及了解,而不是一味的只看重某厂牌比较好、比较便宜,凡事货比三家不吃亏。
车牌辨识系统能否发挥效用,除了软件技术之外,与摄影机及现场施工能力,也有很大的关系。标牌的位置应当是除了外面的车门外,不移动车辆的任何零件就可以容易读出的地方。使用者可要求厂商至现场勘查后,提出建置规划方案,先评估应该架设的地点、摄影机架设角度、是否需要架设辅助光源等,再提出报价,藉由这些动作,除了得以事先评估业者的能力,用户本身也可以达到产品学习及教育训练,日后管理时,会更清楚知道该产品的使用限制及相关因应措施。
(作者: 来源:)