激光清洗机理包括:烧蚀汽化、热振动与热冲击机理和声波振碎机理,如激光清洗漆层和橡胶层;
激光不仅能除锈,还能焊接物体。激光焊接是利用高能量密度的激光束作为热源的一种精密焊接方法。
激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于10~10 W/cm为热传导焊,此时熔深浅、焊接速度慢;功率密度大于10~10 W
激光清洗油漆
激光清洗机理包括:烧蚀汽化、热振动与热冲击机理和声波振碎机理,如激光清洗漆层和橡胶层;
激光不仅能除锈,还能焊接物体。激光焊接是利用高能量密度的激光束作为热源的一种精密焊接方法。
激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于10~10 W/cm为热传导焊,此时熔深浅、焊接速度慢;功率密度大于10~10 W/cm时,金属表面受热作用下凹成'孔穴',形成深熔焊,具有焊接速度快、深宽比大的特点。
当前,随着半导体技术不断缩进,的集成电路器件已从平面向三维结构转变,集成电路制造工艺正变得越来越复杂,往往需要经过几百甚至上千道的工艺步骤。对于的半导体器件制造,每经过一道工艺,硅片表面都会或多或少地存在颗粒污染物、金属残留或有机物残留等,器件特征尺寸的不断缩小和三维器件结构的日益复杂性,使得半导体器件对颗粒污染、杂质浓度和数量越来越敏感。对硅晶元上掩模表面的污染微粒的清洗技术提出了更高的要求,其关键点在于克服污染微颗粒与基材之间极大的吸附力,传统的化学清洗、机械清洗、超声清洗方法均无法满足需求,而激光清洗可以很容易解决此类污染问题。
另外,随着集成电路器件尺寸持续缩小,清洗工艺过程中的材料损失和表面粗糙度成为必须关注的问题,将微粒去除而又没有材料损失和图形损伤是基本的要求,激光清洗技术具有非接触性、无热效应,不会对被清洗物体产生表面损坏,且不会产生二次污染等传统清洗方法所无法比拟的优势,是解决半导体器件污染的清洗方法。

造工艺当然也越来越复杂。这些电子元器件包括插头、连接器、软垫、电缆、线路半导体器件等等。而这些器件的清洗在现在也只能使用激光清洗来完成,同时还会带来额外的益处。举个例子来说,导体的表面涂层的剥离,需要保证实现不能对防腐蚀涂层的损伤,传统的机械研磨和化学腐蚀等处理办法很难做到。
由于激光清洗在目前成本还有些许高昂且缺乏相应的队伍和技术标准,限制了激光清洗技术以更高的速率增长。同时增加激光设备的功率或者能量,将进一步的增加设备的成本,这需要技术解决这一问题,让激光清洗设备的价格降到更低的一个水平。

采用该激光清洗技术对汽车制动片进行清洁是替代传统表面清洗的比较的一种替代工艺,传统的汽车制动片的清洗工艺如喷砂,来清洁背面板,比较不方便。采用自适应激光清洗技术则可以实现自动化的方式来清洁制动片的背面板,以满足后续的涂层工艺。
随着激光功率的增加,现如今的激光清洗几乎可以清洁和去除任何一款汽车上旧部件表面所不需要的旧的表面,如,即使是镀铬的表面层也可以实现的去除脱落。
(作者: 来源:)