车牌识别系统是指能够检测到受监控路面的车辆并自动提取牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。该方法的优点是施工方便,不需要切割地面铺设线圈,也不需要安装车检器等零部件,但其缺点也十分显著,由于算法的极限,该方案的触发率与识别率较之外设触发都要低很多。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉
停车场收费系统安装工程
车牌识别系统是指能够检测到受监控路面的车辆并自动提取牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。该方法的优点是施工方便,不需要切割地面铺设线圈,也不需要安装车检器等零部件,但其缺点也十分显著,由于算法的极限,该方案的触发率与识别率较之外设触发都要低很多。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车的车牌号码,从而完成识别过程。
车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。至于什么样的软件跟硬件,适合什么样的环境,这就必须因环境而异,因为不同的应用环境,对于辨识率的要求未必相同,而这就必须靠经验累积。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。系统进行视频车辆检测,需要具备很高的处理速度,在基本不丢帧的情况下实现图像采ji、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理。
选择匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、等等;
实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采ji到的图像利于识别。采用计算机视觉技术识别车牌的流程通常都包括车辆图像采ji,车牌定位,字符分割,光学字符识别,输出识别结果5个步骤。
(作者: 来源:)