高频感应加热设备的特点和优势感应加热的主要优点是:
①不必整体加热,工件变形小,电能消耗小。高频淬火机常用淬火方法:双介质淬火双介质淬火:把加热到淬火温度的工件,先在冷却能力强的高频加热机淬火介质中冷却至接近Ms点,然后转入慢冷的淬火介质中冷却至室温,以达到不同淬火冷却温度区间,并有比较理想的淬火冷却速度。②无公害。③加热速度快,工件表面氧化脱碳较轻。④表面淬硬层可根
自动高频淬火设备厂家
高频感应加热设备的特点和优势感应加热的主要优点是:
①不必整体加热,工件变形小,电能消耗小。高频淬火机常用淬火方法:双介质淬火双介质淬火:把加热到淬火温度的工件,先在冷却能力强的高频加热机淬火介质中冷却至接近Ms点,然后转入慢冷的淬火介质中冷却至室温,以达到不同淬火冷却温度区间,并有比较理想的淬火冷却速度。②无公害。③加热速度快,工件表面氧化脱碳较轻。④表面淬硬层可根据需要进行调整,易于控制。⑤加热设备可以安装在机械加工生产线上,易于实现机械化和自动化,便于管理,且可减少运输,节约人力,提高生产效率。⑥淬硬层马氏体组织较细,硬度、强度、韧性都较高。⑦表面淬火后工件表层有较大压缩内应力,工件破断能力较 高。
感应加热热处理也有一些缺点。在小信号生成与处理,控制与保护,调节与显示等方面,都更多地运用了可靠性更高、稳定性更好、抗干扰能力更强的数字电路。与火焰淬火相比,感应加热设备较复杂,而且适应性较差,对某些形状复杂的工件难以保证质量感应加热广泛用于齿轮、轴、曲轴、凸轮、轧辊等工件的表面淬火,目的是提高这些工件的性和破断的能力。汽车后半轴采用感应加热表面淬火,设计载荷下的疲劳循环次数比用调质处理约提高10倍。
高频感应加热是利用电磁感应的方法使被加热的材料的内部产生电流,依靠这些涡流的能量达到加热目的。高速钢淬火加热时,要达到碳化物比较充分的溶解,得到较高的奥氏体化成度,淬火加热温度和保温时间都很重要,只是温度的作用更大一些。感应加热系统的基本组成包括感应线圈,交流电源和工件。根据加热对象不同,可以把线圈制作成不同的形状。线圈和电源相连,电源为线圈提供交变电流,流过线圈的交变电生一个通过工件的交变磁场,该磁场使工件产生涡流来加热。
感应加热的基本原则已经理解,自20世纪20年代应用于制造业。对于金属材料,则可采用工作频率在几千赫兹(KHZ)至几百千赫兹、兆赫兹(MHZ)以上的中频、超音频、高频、超高频感应加热。期间,迅速发展的技术,以满足,可靠的过程强化金属发动机零部件的紧急战时要求。较近,专注于精益制造技术,并注重提高质量控制导致感应技术的重新发现,随着准确控制,全固态感应电源的发展。
高频淬火机常用淬火方法:贝氏体等温淬火法
贝氏体等温淬火法:将工件淬入该钢下贝氏体温度的浴槽中等温,使其发生下贝氏体转变,一般在浴槽中保温30~60min。高频焊接时的输入功率要根据管壁厚度和成型速度来调整确定,不同成型方式,不同的机组设备,不同的材料钢级,都需要我们从生产线去总结,编制适合自己机组设备的高频工艺。贝氏体等温淬火工艺主要三个步骤:①奥氏体化处理;②奥氏体化后冷却处理;③贝氏体等温处理;常用于合金钢、高碳钢小尺寸零件及球墨铸铁件。
高频淬火机常用淬火方法:复合淬火法
复合淬火法:先将工件急冷至Ms以下得体积分数为10%~30%的马氏体,然后在下贝氏体区等温,使较大截面工件得到马氏体和贝氏体组织,常用于合金工具钢工件。
高频感应加热和中频感应加热的区别是:
1)高频适用于淬火或焊接,频率高,从外面加热到里面,应用于表面热处理设备。
2)中频适用于锻造透热用,频率低,从里面往外加热的,透热的更均匀。
3)选择中频加热或者高频加热方式应根据产品设计要求,温度控制是由合理的工艺参数决定,不存在那个更好,关键是能否满足产品要求。
中频:频率范围一般在1kHz至20kHz左右,典型值是8kHz左右。加热厚度约3-10mm。多用于较大工件,大直径轴类,大直径厚壁管材,大模数齿轮等工件的加热、退火、回火、调质和表面淬火及较小直径的棒材红冲、锻压等。
高频:频率范围为一般40kHz至200kHz左右,常用40kHz至80kHz。加热深度或厚度约1-2mm。多用于小型工件的深层加热、钎焊、红冲、锻压、退火、回火、调质,表面淬火,中等直径的管材加热和焊接、热装配,小齿轮淬火等。
(作者: 来源:)