由项目实际考察情况得到,烘箱风机厂家所在位置距敏感建筑仅15m,风机进风口正对敏感建筑。针对该项目上风机的噪声进行现状模拟, 利用CadnaA 噪声模拟软件对风机噪声对周围敏感点的影响进行分析,风机所在建筑与敏感建筑之间的噪声值较大,敏感建筑靠近风机进风口一侧的噪声超过70dB(A),噪声较大区域正对风机进风口,噪声值为76.3dB(A)。四个监测点的声
烘箱风机厂家
由项目实际考察情况得到,烘箱风机厂家所在位置距敏感建筑仅15m,风机进风口正对敏感建筑。针对该项目上风机的噪声进行现状模拟, 利用CadnaA 噪声模拟软件对风机噪声对周围敏感点的影响进行分析,风机所在建筑与敏感建筑之间的噪声值较大,敏感建筑靠近风机进风口一侧的噪声超过70dB(A),噪声较大区域正对风机进风口,噪声值为76.3dB(A)。四个监测点的声压级可用风机内两种叶片计算,比较烘箱风机厂家四个监测点的声压级,可以看出叶轮的声压级在穿孔前后高,低位置在风机入口前1米,因为旋转噪声和涡流噪声都集中在叶轮的旋转区域。由于建筑物的遮挡作用,噪声能量被削减,使得噪声无法直接达到的区域的噪声值降低。
常用的烘箱风机厂家噪声治理方法有加装隔声罩,对风机室墙壁进行吸隔声处理,风机室隔声门,进排气筒加消声器等从整体上对风机进行吸声、隔声、消声等综合治理措施。n/60,其中m为动叶片数,n为风机转速,风机两级叶片数为14和10,两级叶片通过频率分别为676。根据项目实地考察情况,受大风量轴流风机安装位置限制,无法对风机房墙体进行常规的吸隔声处理,考虑风机产生的空气动力性噪声主要从进风口传出,且烘箱风机厂家进风口正对敏感建筑,故本项目采用在进风口安装进风消声器的方式对风机进行降噪。
烘箱风机厂家消声器设计
针对空气动力性噪声,主要应用的消声器包括阻性消声器、抗性消声器、阻抗复合型消声器[7]。在该项目应用中综合考虑现场情况,决定采用阻性消声器和消声弯头组合形成的一种结构形式,这种消声器结构简单,通过控制消声器内吸声材料的结构参数,可以有效的控制消声器的消声性能。在原叶片的声压级谱中,中低频有三个高峰值频率,分别对应于叶10片叶片的483Hz通过频率、第二叶14片叶片的676。吸声材料按照吸声原理可以分为多孔性吸声材料和共振吸声材料。该消声器中设计采用多孔性吸声材料。
从烘箱风机厂家不同位置和X、Y、Z三个方向的周向振动来看,风机下部固定在底座上,比其他三个周向位置振动小。风机顶部水平振动为严重,主要为1159.86赫兹和1351.40赫兹、1828.22赫兹等高频振动。总体而言,烘箱风机厂家振动主要是两级叶轮叶片通过频率与1159.86赫兹之和引起的,其次是高频气动力引起的振动和风机基频的倍频。当两级叶轮向后旋转时,会改变两级叶轮之间的流动方向,产生强烈冲击。风机振动主要为1351.40赫兹、1640.75赫兹、189.91赫兹和238.82赫兹。风扇基频的第四个频率189.91赫兹与风扇罩的第五阶固有频率193.70赫兹相似。可能发生共振。应通过优化风机结构来避免共振,以避免风机的基频和倍频。
1)对烘箱风机厂家机壳阶固有频率进行模态试验。风扇基频的第四个频率与外壳的第五个固有频率相似。应通过优化风机结构来避免共振。
2)风机进出口振动较小,振动频率主要为风机基频及其倍频。两级叶轮和电机振动较大,主要是由流场气动力引起的高频宽带振动引起的。
3)由于风机下部固定在底座上,产生的振动小于周向位置。风机顶部的水平振动为严重。可以考虑在顶部安装一个减震器以减少振动。



冷风通过烘箱风机厂家仓底通风口进入仓内,由下至上通过轴流风机出口排出仓外。粮堆由下向上依次冷却,冷却梯度和变化趋于平衡。由于进风口和出风口在同一壁面上,形成了由近风扇到远风扇的温度梯度。在同一平面上,当靠近挡谷网的谷物温度达到-10.0C时,远离风扇的谷物温度为-8.0C,比平均谷物温度高出2C。随着机组容量的增加,引风机作为火力发电厂的重要辅机设备,其烘箱风机厂家运行性能直接影响着机组的安全稳定与经济性运行。在烘箱风机厂家通风过程中,通过铺膜改变通风方向,可以有效地解决粮食温度梯度问题。针对特殊部位的冷却效果,采用风机型轴流风机的负压通风,各点气流均匀稳定。由于温差的存在,在晶粒温度较高的部位容易出现露水现象,且四角不易受外界低温影响,温度较高。在谷底温度变化过程中,烘箱风机厂家通风后谷底较低温度是由于与冷空气的密切接触,提高了通风冷却效果。从粮食上层的冷却效果来看,通风后温度高,主要是由于夏季粮食的储存。上层受温度升高和仓库温度升高的影响,以及积温升高的原因。粮堆中间层的温度梯度接近操作规程,说明干冷空气通过粮堆是均匀的。
(作者: 来源:)